
(~
I ·. ::1
'. · .. - /

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

;t-~
~

SECTION BJ~ PAGE 1

Published: 2/20/67

Overview of Process Creation, Activation and Loading
R.L. Rappaport

Purpose

This document describes the strategy and structure of the
procedu~es involved in process creation, activation and loading.
Collectively these procedures are known as the Process Control
Module.

Introduction

A Multics process is characterized by several segments in the
File System Hierarchy and by an entry in the Known Process Table.
These segments are:

1. A process directory
2. A known segment table
3. A process data segment (which contains a process

concealed stack)
4. A process definitions segment
5. A hardcore stack segment

The process directory mentioned above resides in the Process
Directory Directory and the other four segments are contained
in the process directory itself.

An active process is further characterized by an entry in the
Active Process Table, an entry in the Process Segment Table (see
section BG.2.00) and by the fact that the process' hardcore stack
segment, its process definitions segment and its known segment
table are active segments. That is, Active Segment Table entries
exist for these segments. The Active Process Table entry points
to the Process Segment Table which points to these three Active
Segment Table entri"es.

Finally a loaded process s n ctive process that is further
characterized by the fact that its process data segment is
currently in core storage and also that the process has a
hardcore ring descriptor segment. That is, the process data
segment contains information that must be in core storage in
order for the process to be considered loaded.

' \
i ··-··;

'<:;./

MULTICS SYSTEM-PROGRAMMERS' MANUAL
'2.

SECTION BJ .11. 00 PAGE 2

The various parts of the Process Control Module perform the
functions that create processes, activate inactive processes
load active processes .. unload loaded processes deactivate a~tive
processes and destroy inactive processes. ..

Process Creation and Destruction

Process creation is accomplished in to phases, one of whith is
performed by the creating process and the other of which is
performed by the created process. The procedures which mape up
the two phases are known respectively as create-proc1 and
create-proc2. · .

Basically, create-proc1 creates a process by manufacturing the
five basic segments needed by a process and then by making an
entry in the Known Process Table for the created process. The
created process appears to be a normal, inactive, blocked process
and furthermore the call stack of the created process indicates
that the apparent call to block originated in create-proc2.
Therefore if the new· process is ever awakened it will perform a
return sequence and find.itself executing in create-proc2.
Create-proc2 finishes the job of process initialization.

To elaborate more on the above, create-proc1 will first create
an empty process di recfory which is located in the Process
Directory Directory in the heirarchy. It will then create
branches for the other four segments in this process directory
and initialize the segments themselves. The amount of
initialization needed for each segment varies.· The known segment
table and the hardcore stack need no initialization. That is
empty versions of these segments are given the new process. The
process concealed stack in the process data segment. must be
filled in with the call history to enable the new process to
return to create-proc2. This call. history fabrication is
accomplished by copying from a template segment created at system
initialization (see. Section BL.11). The process definitions
segment is used by create-proc2 to initialize the new process
accordins to the c~eator's specifications. This segment, among
other th1ngs, specifies the li8ker and search list that will be
used by the new process.

Create-proc2 merely initializes the new procesi according to
specifications containe~ in the process definitions segment.
Among.other things, create-proc2 makes known~ to the new process,
the segments that wi 11 be used by this process in dynamic
1 inking. Create-proc2 also prel inks these segments for the new
process. When complete, create-proc2 calls out to a procedure

MULTICS SYSTEM-PROGRAMMERS' MANUAL '2...
SECTION BJ :1'. 00 PAGE 3

n~med process-init. (see Section 80.6.08). However, the search
l1st Pr?vided by the creator process, can direct this call to
any designed procedure. In this way the creator has complete
control over the created process.

Process destruction is basically the inverse of creation.
Destruction of a process merely entails destroying the Known
Process table entry and appropriate handling of the process'
segments. For example, if it is determined that no useful
information is contained in the segments they can merely be
discarded. Process creation is more fully explained in section
BJ.1.01. ·

Process Activation and De-activation

As was stated above, an active process is characterized by:

1. Active Segment Table entries for the process' hardcore
stack segment, known segment table, and process definitions
~egment. These· entries contain flags which insure that the
respective s.egments_ remain active.

2. A Process Segment Table entry which points to the three
entries mentioned above.

3. An Active Process Table entry which, among other things~
points to the Process Segment Table entry.

In order to activate an inactive process, some other process
must (1) create Active Segment Table entries for these segments
(if the entries do not already exist) and place the above- ·
mentioned flags on ·(2) create a Process Segment Table entry for
the process and (3) create an Active Process Table entry for the
process. The first two steps are performed by a procedure in
Segment Control: actproc (see Section BG.3.03). The arguments
used by this procedure are the tree name of the inactive .
process' Process· Di~ectory and the process id of the inactive
process. The procedure returns a pointer to the Process Segment
Table entry created. At this point an Active Process Table
entry is created using the pointer returned by actproc and the
Known Process Table entry of the process.

MULTICS SYSTEM-PROGRAMMERS' MANUAL
1.,

SECTION BJ. t. 00 PAGE 4

De-activation is simpli the inverse of the aforementioned The
Active Process Table entry of the process to be de-activaied is
destroyed after its Known Process Table entry is updated and the
Process Segment Table pointer is obtained. Then entry point
deact proc (see BG.3.03)-in Segment Control is called passing
this pointer as an argument. This procedure destroys the Process
Segment Table entry and it also resets the flags that insure that
the three basic segments must remain active. These segments will
then be de-activated by normal page and ~egment machinery •

. Process Loading and Unloading

The difference between a loaded process and an unloaded but
active process is that the loaded process has a hardcore ring
descriptor se~ment and that the loaded process has its process
data segment 1n core storage. The Active Segment Table entry for
the process data segment contains a flag which indicates that
this segment is wired down. It is in the nature of the active·
unloaded state that such a process, with a "little bit of help"
is capable of loading itself. That is, it can retrieve the
process data segm~nt from secondary storage.

Consider an active unloaded process whose execution state
is ready (see Section BJ.3.00). This process has no descriptor
segment. By virtue of its being in the ready state, the
process is liable to be picked for running at any moment.
The process that chooses the active unloaded process for
running is required to grant the "1 ittle bit of help"
mentioned above.

Suppose process A is executing in swap-dbr (see Section BJ.5.01)
and is trying to switch control to process B. Process B is
active and unloaded. Process A will discover that B is unloaded
and create both a hardcore ring descriptor segment for B and an
interim process data segment for B. Both segments will be
created by copying from template segments compiled at system
initialization. The creation of these segments forB is the
help required. Process A can now transfer control to B.

8 wi 11 then find itself executi,ng in swap-dbr and it wi 11
discover that it is unloaded. It will then call the Process
Bootstrap Module (see Section BJ.5.03) using the lnt~rim process
concealed stack as a stack. This module will retrieve the
process data segment from secondary storage and will then return
to swap-dbr. At this time B is loaded.

p 0' ...

?-
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.~.OO PAGE 5

The above example was carried through with an unloaded process
that was also in the ready state. Active 1 blocked processes can
be awakened (see Section BJ.3.02) even though they may not be
loaded. Awakening is equivalent tq changing one's execution
status from blocked to ready. Hence 1 the above example is
sufficient.

Unloading of processes is performed in order to free core space.
Unloading of a process is accomplished by destroying the hardcore
ring descriptor- segment of the process and allowing its process
data segment to page out automatically. Process activation and
loading are more fully explained in Section BJ.1.02.

