
MULTICS SYSTEM-PROGRAMMERS' MANUAL

I de.nti fication

create_l inker _segs
R. L. Rappaport

Pur02se

SECTION BJ.8.03 PAGE 1

Pub 1i s~ed: 11/03/.67

Subroutine create_linker segs is one of .the procedures
invoked at prc:cess creatTon time. This procedure cre;;~tes·
copies of var1ous linkage sections and places these copied
segments into the new process directory of the created ·
process. Create_linker_segs also produces a table, the
pre-linker driving table, in which these created segments
(and others ~swell) are listed. This table is used at
process initialization time to pre-link the linker in
the new address space. It is.· intended that several versions
of create_linker_segs will be.available, each capable
of establishing a particular version of the linker and
its needed subroutines. That is, to create a process
with a particular linker would require calling a particular
version of create_linker _se~s. This document provides
an outline of the structure 1nto which all such versions
must fit. Section BJ.8.06 describes the initial version
of cr~ate_linker_segs which will be implemented in initial
Mu ltics.

Introduction

In order to be able to .handle dynamic 1inka9e fau·lts,
a process must have a pre-linked linker i'n 1ts address
space that will be invoked upon recognition of a linkage
fault. When we say pre-linked this qoes !lQ1 imply that
the linker need be pre-linked to ev;{Y procedure it calls
and that these in turn need be pre- · nked. Rather it
implies that a minimum path through the linker be·
pre-linked and that the linkage faults that the linker
itself may get can be handled by the subroutines on the
minimum path. Before going on let us review the even·ts
that occur at the time of a linkage fault.

Let us consider the case where procedure <a> with linkage
section <a. 1 ink> calls procedure with 1 inkage section
<b.l ink>. At the time of the fault, control is. immediately
passed to the fault interceptor module (FIM, see Section
BK.3.03). Upon determining that the fault is a linkage
fault, the FIM decides to call the lin~er. In order to

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.8.03 PAGE 2

call the linker, the FIM must call indirectly through
a pointer in the process definition segment (pdf. see .
BJ.1.06). The reason this call must be done indirectly
is that the FIM and its link~ge section are shared segments.
pre-linked at system initialization. Since the linker
need not have the same segment number in each process, .
we cannot place a valid pointer to the linker in FIM.link.
However, pdf does have the same segment number in each
process and hence its segment number can be placed in
FIM. link.

The purpose of the linker is to produce, from the symbolic
infermation available in <a> and <a. link>, a valid ITS
pointer that points to the entry point of located
in <b. link>. This ITS pointer will then be stored directly
into the word pair in which the original fault was discovered.
In order to develop the needed ITS pointer, the linker
must first obtain segment numbers f. or and <b. 1 i-nk>.
This is done by a call to the segment managment module
(SMM, see Section 80.3.00) which returns the needed segment
numbers. With these segment numbers it is not difficult
to see how the linker might develop the needed pointe.r
that will replace the original fault tag. Since it is
not our purpose to review the algorithms coded into the
linker but to get an overview of the whole strategy, let
us instead look at the way the SMM develops the segment
numbers that it returns to the linker. What follo~ is
a simplified overview of the SMM which only points out
things relevant to the discussion at hand.

The SMM uses a data base known as the Segment Name Table
(SNT, see BD .3.01). The SNT. is a table which lists
c0rrespondences between

1 •

2.

3.

call names of segments (i.e. the names by which
they are called.)

path names in the file system.

segment numbers.

Conceptually, the SNT is a set of 3-tuples. The elements
of each particular 3-tuple are the call name of a segment,
its path name in the hierarchy, and the segment number,
if any, that has been assigned to the segment. (The 11 if
any" in the preceeding sentence refers to the fact that
the segment number element in a particular 3-tuple might
be blank signifying that no segment number has as yet
been assigned to this segment.)

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BJ.8.03 PAGE 3

The SMM is b~sically faced with the following task. It is
called and passed the call name of a segment ~nd it
wishes to return the segment number of the segment. The
SMM accomplishes the task in the following way. First
the SMM looks into the SNT to find if a given call na·me
is listed in an existing 3-tuple. Suppose for example
that it is listed in an existing 3-t~ple. (We wi 11 discuss
later how this 3-tuple came into existence.) If the
segment number element is also listed in the 3-tuple.
the job is done. However, if the segment number is not
listed, it must be determined before we can proceed.
In order to determine this number we must call the basic
file system primitive estblseg (see Section BG.8.04) and
pass to estblseg the path name found in the 3-tuple. ·
Estblseg returns the desired segment number. If on the
other hand we cannot find an existing 3-tuple which
contains the desired call name, our problem is to est~blish
such a 3-tuple. The search module (see BD.4.00) is the
procedure to be called in this case. The task of the ·
search module is simple. The search module is called
by the SMM, passed a call name and it returns a path name.
The SMM takes this path· name and the call name and
establishes a new 3-tuple which as yet contains no segment
number. SMM then calls estblseg to complete the 3-tuple.
On subsequent calls for this call name, an existing 3-tuple
will be found.

The introduction of one more concept will allow us to
complete this overview~ In the hierarchy there exists
a certain class of segments known as "relationship ·
segments". These segments are lists of 3-tuples in which
the segment numbers are left out. These segments play
an important role in the SMM.

SMM calls estblse.g in order to obtain a segmen. t number
for a segment located in the file system hierarchy by
a given path name. However, the segment named by the
path name might not be the segment in which the SMM is
primarily interested1 it might in fact be a relationship
segment associated with the desired segment. The
relationship segment of a segment serves to establish
the association between call names that the segment uses .
and path names that the human author of the segment wished
to make explicit. For example, if we have a procedure

MULTICS SYSTEM-PROGRAMMERS' M<\NUAL SECTION BJ.8.03 PAGE 4 .·

named z that calls a routine named ''cosine" and we wish
this call diverted to the segment with path name >a>t:>>x,
we need merely establish a relationship segment for z
that lists this desired correspondence. When we first
encounter z, the SMM will obtain its relationship segment
and SMM will incorporate the contents (i.e. the 3-tuples)
of its relationship segment into the SNT. When z subsequently
experiences a linkage fault for cosine, the 3-tuple associating
cesine with a>b>x wi 11 already exist. · .

Let us now review the path followed on a linkage fault.
The FIM calls the linker indirectly through pdf. The
1 inker calls SMM in order to obtain segment numbers.
The SMM refers to its SNT and either calls, (1) nothing
beca~se a complete 3-tuple exists, (2) estt:>lseg because
an incomplete 3-tuple exists or (3) the search module
tQ.get a 3-tuple. ·When the SMM has obtained the desired
segment number it returns to the linker which sets the
desired link and returns to the FIM. Now we are faced
with·the question of what to pre-link.

The indirect call from FIM to pdf need not be pre-linked
at process initialization time since all processes use ·
a shared copy of FIM and its linkage section and this
shared copy is linked to pdf at system initialization
time.

The pointer in pdf to the linker must be set at process
initialization time. Likewise the call from the linker
to the SMM must be pre-linked.

The SMM however makes two calls and one external reference.
The reference is to the SNT and it ·of course must be pre-linkec;f.
However, only one of the calls, the call to estblseg,
must be pre-linked. The call to search will not be pre~linked.
However, in order to be able to handle the fault that
will result from the call to search, a 3-tuple.that defines
an association between the name·" search" and a pathname ·
must be placed in· the initial SNT of the new process.
This· pathname will in fact be for a relationship segment
for search which will list all the call names used by
search and their associated pathnames. Let us see how
this will work.·

MULTICS SYSTEM-PROGRAMMERS- MANUAL SECTION BJ.8.03 PAGE 5

At the time of t.he first linkage fault in the new process
(a fault for call name x) the FIM will call the linker
which wi 11 call the SMM. (So far SQ good.) The SMM will
find no 3-tuple defining x and will therefore call search
at which time we wi 11 get a recursive linkage fault.
We wi 11 again travel down the path arriving at the SMM
again this time looking for a 3-tuple defining "search".
This time we will find one and call estblseg to get a
segment number. Estblseg will inf~rm the SMM that the
given pathname was in fact a relationship segment and
the SMM will then incorporate the contents of the relationship
segment directly into the SNT before obtaining the segment
number of the search module itself. After obtaining the
number the SMM wi 11 return and the linker wi 11 set the
fault in the SMM's linkage section and return to the FIM.
The FIM will restore the conditions as they were before
the second fault and the SMM will complete its call to
search. S. ea rch may get 1 i nkage fau 1 ts . but the ca 11 . na.mes
will all be defined because of the relationship segment .
described above. Eventually., search wi 11 return and the
3-tuple defining x will be established by the SMM. In
this way the original linkage fault for x can be satisfied.

QiSCUS§iOn

Create_linker_segs is called from create_proc (see BJ.8.01)
and the calling sequence is:

call create_linker_segs (dir_pathname);

where dir_pathname is the pathname of the new process directory.

The purpose of create_ linker segs is to establish the
needed pieces of data that wTll be used in pre-Unking
the linker in the new process address space. In particular,
in order to pre-1ink the linker, the new process will
have to have available a copy of the linker's linkage
section., a copy of SMM's linkage section., etc. Therefore,
create_Hnker_segs tD.Jst first create copies of several
segments and place them into the new process directory.
In particular, create linker segs must make copies of
the linkage sections of the segments that wi 11 be pre-linked.
These ares

1 • The 1 i nker 's 11 nkage sect ion.

2. The SMM's linkage section.

t'ULTICS SYSTEM-PROGRAMMERS# ~NUAL SECTION BJ.8.03 PAGE 6

Als(l) the initial SNT which lists a 3-tuple defining search
mu·st be. copied into the new directory.

Secondly, the pre-linker needs to know ~ich segments
to pre-link. The pre-linker""s principal ·pt~ce of data
is the pre-linker driving table which mu.st be. created
by create_linker_segs. This table, whose format is given
below has an entry for each segment which either is to
be pre-linked (e.g., the linker) or is referred to by
a segment ·that is to be pre-linked (e.g., estblseg which
is called from SMM). The segments listed in the pre-linker

, .driving table are:

1. linker

2. linker.link

3. SMM

4. s,..,. link

· 5. SNT

6. estblseg (actually hcs_1$estblseg. See 80 .6.03)

7. estblseg.l ink (actually hcs_1. 1 ink)

The pre-linker driving table is placeG into the new process
directory. The table wi 11 be accessed by the new proc:ess·
itself once it begins its self initialization.

fermat pf the·pre-linkcr griving tabls;
-;· .. ,

The pre-linker driving table is implemented in two segments. ·
The first segment <pre link dt> contains a fixed length · ·
entry per li~ted segment. The second segment <pre-link_nametable>
contains var1able length 1 nformation (i.e., character · .
strings) about each of the segments. The fixed length
entries contain relative pointers to their resPective
entries in the name table. The PL/1 declaration of <pre link dt> is: · · - · -·

MULTICS SYSTEM-PROGRAMMERS" MANUAL

del· 1 pre_llnk_dt based (p)

2 ceunt fixed

2 entry (~pre_link_dt.count),

3 · call_name_ptr bit (1 8),

3 path_name_ptr bit (18),

3 entry_name_ptr bit (18),

SECTION BJ.8.03 PAGE 7

I* Relative ptr to call
name of seg *I

/* Relative ptr to
· directory path name *I

I* Relative ptr to entry
name *I

3 linkage_section_sw bit (1),/* "1"b if segment is ·
· 1 i nkage section "f1' b

if text segment *I
3 pre_link_sw bit (1),

3 assoc_seg_ptr bit (18),

3 segptr ptrJ

I* "1".b if segment should
be pre_linked *I

I* Relative ptr to entry
of associated text
or linkage section *I

I* Pointer to segment */

The relative pointers to the call names, path na~s, and
entry names are pointers to structures allocated in the
name table. The PLII declaration of the respective
s true t u res 1 s 1

Glc 1 1 name_struc based (p),

2 count fixecd,

2 char(p~ame_struc.count)J

The assoc_seg_ptr in an entry is a relative pointer to
the fixed length entry of the associated text (linkage)
segment if the current entry is one for a linkage (text)
segment. That is, this relative pointer points into
<pre_link_dt> itself.

MULTICS SYSTEM~PROGRAMMERS"' MANUAL .SECTION BJ. 8. 03 PAGE .8

The segptr is an ITS pointer to the segment that will.
be established at pre-1 inking time. Create_l iriker _segs
init~ally leaves it empty.

The pre_link_sw is one of several things that will be
discussed below~

. For the advanc~d repder

Several points have been ignored .yntil this point. First
several other segments not yet mentioned will have to
appear in the pre_linker driving table. Of particular
interest among these is a "datml<" type segment that wi 11
be neeaed to pre_l ink " trap ·before . 1 ink" tr~ references
that will be encountered. The system inlt alization program,
dbi (data base initializer, see B.L.7.03), a he!rdcore segment
pre-linked at system initialization, ts· available and
so is its shared linkage section. ·All that need be done
is list the two segments in the table. However, without
spec.ial consideration several of the pre-1 inking procedures
are liable to attem't to write into the linkage section
ef dbi. This would be eisastrous since the segment has
been matle read only. Therefore fer dbi.link'"s entry in
the pre-linke:r driving table the pre_Unker _sw is set
tQ "at' b in order to prevent the attemptea writing •.

Ottler .segments that have te be listed inc lucie the vario~s
EPL routfnes called be SP'f4 and the actual segments into
which the SMM is really broken. That is, we have been
c_onsidering the SMM as a single segment when in reality
it is a collection of several segments.

F ina 11 y, one more ·point $htu 1 ~ be maC~te. When the new
process gets thr•ugh pre-linking it will nake its first
call to a procedure named 1'ini t_admin". This call will
cause ~ linkage fault. In order for a creator· process
to be sure that the correct segment is established for
"ini t_admin" an additional 3-tuple is placed in the SNT
by create_llnker_segs. ·This 3-tuple relates the name·
ini t_admin to a path name in th.e hie·rarchy. In this way.
the creator has control over the initial ,path which the
new process will follow.

~'

