
. /3.
MULTICS SYSTEM-PROGRAMMERS' MANUAl . SECTION BJp.OO PAGE 1

Published: 03/20/67

Identification

Overview of Process Switching
R. L. Rappaportc

Purpose
,.
'
\:

This document describes the overall strategy used in the
switching of processes on the various processors in Multics.

Introduction

A running process eventually comes to the point at which.,
for the time being., it is unable to continue runnin~.
There are three reasons why a process might discont1nue
running.

1. The running process may have no further need for
a proce~sor until some other event has taken place.

2. The running·process may be forced to relinquish
control of the processor because it has run out
of time or because a process of higher priority
has need of the processor.

·3. The running process may wish to give temporary
control of the processor to another process so
that the other process can schedule itself. In
this case the ori~inal process regains the
processor almost 1nstantaneously.

Process switching motivated by either of the first two
reasons is inherent Jy different. from process switching
motivated by the third reason. In the first two cases.,
the process swifched·to gains unconditional control of
the processor. In the third case the process switched
to can only use the processor to schedule itself whereupon
it must return the processor to the original calling process.
The Process Switching Module has two entry poin:ts~ swap-dbr
(see Section BJ.S.Ol) and ready-him (see Section BJ.S.02),
which correspond to the two types of switches that occur

MUL TICS SYSTEM-PROGRAMfviERS' MANUAL SECTION BJ .5. 00 PAGE 2

in Multics. Entry point swap-dbr is used to give away
. unconditional control of the processor. Ready-him is

used when one process wishes to allow another process
to schedule itself.

Description

The basic hardware mechanism by which a processor switches
from one process to another is the "load descriptor segment
base register" instruct ion. · _

Conceptually swap-dbr is nothing more than a ldbr instruction
which loads the descriptor segment base register with ·
the address of the base of the descriptor segment of the
process to which control is being given •. Ready-him conceptually
is nothing more than an ldbr followed by a call to scheduler
(see Section BJ.4.00) fol' lowed by a return ldbr. The
first ldbr. in ready-him loads the descriptor segment base
register with the address of the descriptor segment of
the process due to schedule itself. The second ldbr reloads
the register with the address of the descriptor segment
of the process which originally called ready-him. ·

In actuality swap-dbr and ready-him are slightly more
complex than as described above. The additions to the .
conceptual outlines perform three distinct tasks.

1 •

2 •

3.

Simple book-keeping and housekeeping tasks are
performed in the Process Switching Module. For
example~ swap-dbr is involved in accounting for
processor usage.

Both swap-dbr and ready-him are partially involved in
the tasks of loading and unloading of processes in
Multics.

Because th~ Process Switching Module uses shared
data bases it must involve itself with interlocking
schemes to protect the validity of the data with
which it deals. · ,

The first and third tasks above are straight-forward and
nothing more need·be said about them in this overview.
They are described in great detail in BJ.5.01 and BJ.5.02.
The second task is more involved and a brief description
of the steps taken in.ready-him and swap-dbr is presented here •

•

' · .. -..

•
. ·--.....

(,~;)

· MULTICS SYSTEM-PROGRA~1ERS .. MANUAL SECTION BJ .5 .00 PAGE 3

An active process ·(see Section BJ.1.00) in Multics is
a process that has an Active Process Table entry. In

.. addition, an active process has several entries in fi.le
.system tables that need not concern us here. A loaded
process is an active process that has a hardcore ring
descriptor segment and also has its Process Data Segment
(which contains the Process Concealed Stack) in core.
In order to switch control of a processor to an unloaded,
active process, one must first make the unloaded process
appear to be loaded. That is, the process trying to switch
control to the unloaded process must create a descriptor
segment for the unloaded processs and it must provide
the unloaded process with a stack.

Ready-him when faced with the problem of switching to
an· unloaded process merely makes a copy of a hardcore
ring descriptor segment template for the unloaded process
prior to the switch. Since ready-him is called on the
Processor Stack and since it uses this stack to call scheduler·
no special stack ·must be created for the unloaded process.
After the return from scheduler and after the return switch,
the descriptor segment created above is destroyed.

The descriptor segment is created in Ready-him by simply
copying from the template descriptor segment (see Section
BJ.S.06) and therefore destroying it destroys no useful

. information. The descriptor segment was created only
as a tool to allow the normal scheduling mechanism to
work. Figure 1· is a simplified flow diagram of ready-him.

Swap-dbr must handle the preparation of unloaded processes
a little differently because the process once switched
to will need to do.more than the restricted operation
of scheduling itself. Swap-dbr prepares both a hardcore .
ring descriptor segment and an Interim Process Data Segment
(which contains an empty Interim Process Concealed Stack) ·
for the unloaded process. It then switches control to
the unloaded process. The unloaded process now has a
standard descriptor segment and an empty Interim Process
Concealed Stack. This process, still executing in swap-dbr,
calls the Process Bootstrap Module (see Section BJ.5.03)
using the Interim Stack. The Process Bootstr~p.Module,
among other things, restores this process' Process Data
Segment to core storage. Upon return to swap-dbr the
process has all the information in core that is necessary

"'"' - ~ .

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.S.OO PAGE 4

for a loaded process. However, its descriptor segment
is sti 11 the standard one.. In order to "persona 1 i ze"
this segment swap-dbr switches stacks to the Process
Concealed Stack (from the Interim Process Concealed Stack)
and calls subroutine overlay (see Section BJ.S.OS). This
procedure restores the process' hardcore ring descriptor
segment to its exact condition before it was unloaded.
Upon return from overlay, the Interim Process Data Segment
is destroyed (it is now useless) and swap-dbr returns
to its caller. Figure 2 is a simplified flow diagram
of swap-dbr.

To rephrase the above paragraph, the.object of swap-dbr
in the case of switching to unloaded processes is to restore
the process to the exact state it was in before it was
unloaded. This involves retrieving its Process Data Segment
from secondary storage and also recreatin~ its hardcore
ring descriptor segment. This is accompllshed by creating
a standard descriptor segment for the unloaded process
which will evolve into an exact duplicate of the unloaded
descriptor, and by creating an Interim Process Data Segment
which will be used as a t~ol in retrieving the segment.

Finally it should be noted that the ldbr instructions
mentioned are not actually imbedded in swap-dbr and ready-him.
Since ldbr is an instruction that can be executed only
in master mode, the actual ldbr instructions mentioned
above are imbedded in a distinct master mode segment.
This segment is known as the ldbr procedure (see Section
BJ .s .04).

t"t •.•

MULTICS SYSTEM-PROGRAMMERS' MANUAL

in Process J# call ready-him

create · no
Descriptor..., ___ --<
Segment
for K

'-------....-t ldbr(K)

call
scheduler

ldbr(J)

SECTION BJ.S .00 PAGE 5

destroy
>------1..,-Desc ri pto r

Segment

Figure 1. Simplified flow diagram for ready-him •

..
------ --- -~---;-- ... ----· ... ----·----~ .. ----:--------··· ------ --..... ~::---·~-,---..-_,_, _________ . ~

\

.·· _,·

. MULTICS SYSTEM~PROGRAMMERS' MANUAL
., ..

in Pro~ess J·. ·. C(lll s\\lap-dbr(K)

create
Descriptor
Segment and
Interim
Process
Data Segment

ldbr(K)

.. · :'-

.... : .:·· .. ·-

·. · .. ·.. · .. ·- . ·. ' ...

·SECTION BJ.S.OO . PAGE• 6

ca 11 .
Process

·eootstrap
Module .·

call
overlay

~----------~--------~Destroy

•

•·

Figure 2. Simplified flow diag.ram for swap-dbr.

Interim
Process
Data
~egmen·t

