
!
~,...

. -;~'' ~ ,.;:?-·

.

MUL TICS SYSTEM-PROGRAMMERS' t-'lANUAL SECTION BJ 201 PAGE 1

Published: 03/24/67
(Supersedes: BJ.5.01, 09/13/66)

Identification

Swap_dbr
R. L. Rappaport

Purpose

Swap_dbr is the procedure in which processes give up control
of a processor.

Preface

The description of swap dbr that follows is divided into
three sections. The first section presents the basic
outline of the subroutine. This would be an adequate
description if it could be assumed that processes in the
system are never unloaded and that execution of the subroutine
will take place while:

1. The processor is completely masked against interrupts~

2. A global interlock is on, which denies access to the
Process Exchange to all processes, except the one ih
which this subroutine is currently executing.

The second section presents the necessary additions to
the basic outline that enable the unloading cf processes
to be accomplished The final section is a complete
specification that describes the ~teps that ~ust be taken
to allow mor·e than on.e· process to be concurrently· executing
in the Process Exchange.

Basic Outline

Entry point SltJap_dbr, conceptually 1 is nothing more than
an ldbr (load descriptor segment base register) instruction ..
Hm"Vever, at process-s\vitching time many associated bookkeeping
and housekeeping chores must be taken care of. These
chores include accounting for processor usage, updating
information in the Active Process Table, etc.

The ca11 to s~tvap..:..dbt· originates in a process, the calling
process, while the calling process is executing in subroutine
getwork (see Section BJ.4.02). The p~incipal argument
passed to swap..;..dbr is a data item ltJhich indicates the

•

'JD··'': .. ·:. ! .. :;
\. ~.·

. ~ .. :· '/

)

MULTICS SYSTEI\'1- PROGRAMMERS' r'IANUAL SECTION BJ.S.Ol PAGE 2

proc~ss to whiCh control of the processor w 11 be given,
the target process. The actual data item passed in this
call is the Active. Process Table index of the target process.
The complete calling sequence for S\11/ap:-dbr is:

call swap_dbr (apt_index, error_return);

where apt index is the Active Process Table index of the
target process and error_returr:J is the location of an ·
error return in the calling procedure The error_return
is not actually needed if no unloading of processes is
allowed. Therefore this argument will not be mentioned
again in the basic out 1 ine of swap_dbr. The stack use.d
in this call is the Process Concealed Stack which is contained
in the Process Data Segment.

As mentioned above, there are several housekeeping chores
handled in swap_dbr. Before describing the steps taken
in swap_dbr, it is important to understand the problems
which these steps are meant to solve. These problems
are enumerated and described below.

1. As SlrJap dbr is involved in process switchina on the
various procissors in the system, this subroutin~ must
assume part of the responsibility of accounting for processor
usage. This accounting is handled by two steps taken
in s~r-Jap_dbr. At an appropriate point in the execution
of swap_dbr, the Processor ~~letering tvlodule is called and
processor usage since the last call is metered to the
account currently responsible. Th~ account currently
responsible is specified by a dat~ item in the Proces.sor
Data Block (see Section BK.1.02). Swap dbr then determines
which account will be responsible for processor usage
in the immediate future and a pointer to this account
is stored in the Processor Data Block. The account to·
which processor usage should be charged while process
A is running, is contained in proce~s A's Active Process
Table entry. Therefore, swap dbr determines which account
wi 11 be responsible by referring to the target's Active
Process Table entry.

2. ~·Jhen svvap_dbr_ is entered, the process·or timer register
contains the value stored by the calling process minus
the number of memory cycles sed by this process. At
some point in the procedure the timer register must be

.· ..•.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.S.01 PAGE 3

reset to the value provided by the target's scheduler
(see Section BJ.4.00) the last time the target was running.

3. The basic ··outline of swap:::_dbr assumes that all processor
ihterrupts are ~asked during the execution of the subroutine.
This means that· any interrupts which occur wi 11 not be
serviced unti 1 after swap_dbr has returned. Two types
of processor int,errupts exist: system interrupts and process
interrupts. Sys~em interrupts are of interest to the
processor itself.and their servicing can be safely delayed.
Process interrupts, however, are of interest to the process
executing on the-.process-o.r and delaying them until after
swap_dbr returns means that the wrong process wi 11 be .
interrupted. Therefore, s.wap_dbr. must insure that any
process interrupts meant for the calling process, which
are behind the processor interrupt mask, do not interfere
with the target process. The strategy employed for removing
these interrupts from behind the mask hfnges on the nature
of process interrupts. That is, all process interrupts
ultimately cause the interrupted process to call swap_dbr.
Since in this case the calling process is· already executing
in SlrJap_dbr, any process interrupts directed to\JIJards the
calling process can be safely ignored. The only way to
remove interrupts from behind a mask is to allow them
to occur (i .e., unmask them). Therefore, · to "drain'' a
particular process interrupt, the particular interrupt
handler is informed, by the setting of a switch,- that
draining is taking place, the interrupt Is temporarily
unmasked and then this switch is turned off again and
the processor is remasked. If th~ interrupt was behind
the mask, it would have been serviced while the processor
'VJas unmasked and the SII'Jitch setting \o\Jould have informed
the handler that the interrupt is being drairred. The
switch used is the drain switch and it exists as a data
item in the Processor Data Block. In S\vap dbr two of
the three process interrupts. are draihed: the timer runout
interrupt and the quit inte·rl"'upt. (The third process.
interrupt, the pre-·emption interrupt, is previously drained·
in getvJo rk ~)

4. When an ldbr instruction is executed the address
space seen by a processor changes whiTe the other machine
registers remain fixed. In particular, since the target
process and the calling process need not be at the same
stack level, base register sp must be reset after the
ldbr is executed. Clearly then, before the ldbr, the
calling process must store the current va1ue of sp so

fv1ULTICS SYSTEtJ1-PROGRM~MERS' MANUAl SECTION BJ.5.01 PAGE 4

that it will be available the next time this process begins
to run. After the ldbr the target must retrieve its stored
value for sp and reload this register. The value of sp
is stored in the respective Process Data Block of each
process.

5. In order for a processor to handle faults and interrupts
properly, the process executing on the processor must
have access to the Processor .Data Segment (see Section
BK.1.01) that belongs to this processor. Swap_dbr assumes
the responsibility for transferring the segment associated
with a particular processor to the process that is due
to run next on this processor. In order to pass along
the Processor Data Segment to the next Process, the segment
descriptor word for this segment is loaded into the A-register,
by the calling process, immediately before the switch
is made. Immediately after the switch (i.e., the ldbr
instruction) the target process stores the A-register
into its O\'Vn descriptor segment at the appropriate relative
location for the Processor Data Segment. (This step assumes
all processes know the Processor Data Segment by the same
segment number and that s"vap_dbr kno'.NS this number.)

6. \ftJhen swap_dbr is entered the target process is sti 11
on the ready list and its execution state is defined as
ready. That is, the ready switch in the target's Active
Process Table entry is QQ.. At an appropriate point sv,Jc3P_dbr
removes the target from the ready list and redefines its
execution state to running.

At this point. all the basic issues faced by svJap_dbr have
been presented and it is possible ·to intelligibly specify
the basic outline. Once the significance of the above
problems have been understood, the actual steps taken
by swap_dbr are seen to be fairly straight-forward. The
steps of swap_dbr are described sequentially belo'.v and
are also illustrated in figure 1.

One point should be kept in mind. Before the ldbr instruction,
svvap dbr executes in the address space of the calling
proc;ss and after the ldbr it executes in the address
space of the target process.

1. Processor usage is accounted for. This is done by
calling subroutine meter cpu (see Section 80.1.01) with
two arguments: the Active f'v1eter Table (see Section 80.1.07)
index of the account currently being charged and the amount

MULTICS SYSTE~l-PROGRM·1t,iERS' ~'lANUAL SECTION BJ.5.01 PAGE 5

of usage since the last call to meter_cpu. The amount
of usage is determined by subtracting the current value
of the processor timer register from the value of the
timer register at the time of the last call. This last
value is saved in the Processor Data Blocko The Active
Meter Table index of the account responsible is also stored
in the Processor Data Block.

2. Timer runout interrupts are drained. That is, the
drain switch in the Processor Data Block (of this Processor)
is set .QD. and a nev.1 processor interrupt mask is established.
This nev1 mas,k masks a 11 interrupts except timer runout
interrupts. The new mask remains in place for one instruction
ltJhereupon the old rrask is restored and the drain s~r.Jitch
is turned off. If a timer runout had been 'lf.Ja it i ng behind
the mask it \iiJould have been accepted and handled appropriately.

3. The timer register is reset with a new value and
the Active Meter Table index of the account to which processor
usage will be charged while the target process is running
is stored into the Processor Data Block. Both of these
quantities are obtained from the target process' Active
Process Table entry.

4. Quit interrupts are drained. The procedure is similar
to that involved with timer runouts except that the temporary
mask used unmasks on 1 y quits rather than timer runouts.

5. The calling process stores the current value of base
register sp into its Process Data Block.

6. The segment descriptor word of the Processor Data
Segment for this processor is loaded into the A-register.
It is obtained from the calling process' descriptor segment.

7. The ldbr instruction is executed. The operand of
this instruction is the absolute address of the base of
the target's descriptor segment.

8. The A-register is stored into the target~s descriptor
segment.

9. Base register sp is loaded with a new value. This
value is obtained from the current (i.e. 1 the target's)
Process Data Block.

1 n T~ . .t.. ..-? .t:. • • • .J- .J-0 •. ne Targz~ process reue, 1nes .lTS execut1on SLaLe
to the runnina state. That is~ the ready switch is set

'"f d h ~ . . '· ~ . . . th t ..s...' {\ J-. ,,-QL an t e runn 1119 S','ll TCt1 :ts set .QD. 1n , E: arge L s HC 1..1 \;c

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01

Process Table entry.

11. The target process removes itself from the ready
list.

PAGE 6

12. Swap_dbr returns to its caller in the target process.

Additions to En~ble Unloading of Processes

Certain modules \in the hardcore supervisor perform functions
whose execution cannot be interrupted by page faults.
For example, all ;modules engaged in servicing page faults
would be included in this category. This implies that
all private data (e.g. stacks), belonging to a process~
which might be referenced by one of these modules must
be in core storage while the process is running. A process
which is capable of running without causing such page
faults is known as a loaded process and a process which
is incapable of running without a minimum of preparation
is known as an unloaded process. At any time swap dbr
may be called upon to switch control to an active tsee
Section BJ.1.00 for an accurate definition of this state),
unloaded process. Swap_dbr assumes the responsibility
of preparing active, unloaded processes so that they are
able to run.

Briefly, a loaded process is an active process which has
a hardcore ring descriptor segment and also has Its Process
Data Segment in C?re. The. preparation swap_dbr goes !hrough ,
vJhen called to sw1 tch to an unloaded process resu 1 ts 1 n
the unloaded process appearing to:be loaded. This is
done by giving the unloaded process a standard hardcore
ring descriptor segment and an Interi~ Process Data Segment.
These two segments allow the unloaded process to take
control of the processor without jeopardizing critical
system procedures. However once in control the process
will recognize that it is unloaded and will not attempt
to return from svJap_dbr. It wi 11 instead call out to
a procedure which will restore to core storage all data
needed by the process in order to function properly.
Once the process is completely restored it is then able
to return from swap_dbr.

Specifically, swap_dbr., vJhen called, determines \.vhether
or not the specified target process is unloaded. The
Active Process Table entry for a process contains a switch,
the 11 not loaded SlrJitch''~ whose value is a function of
the state of the process. If the SlrJitch is Q!J. the process

MULTICS SYSTEM-PROGRAMf'.1ERS' MANUAL SECTION BJo5.01 PAGE 7

is not loaded. If the target process is not loaded several
extra steps must be taken by the calling process in swap_dbr
before control is transferred and several extra steps
must a 1 so be taken by the target process in S\vap_dbr after
the switch is made.

First let us consider the additional steps taken by the
calling process. The following steps can all be insterted
between steps 2 and 3 oj= the basic out 1 ine.. The first
half of S\JIJap_dbr (i.e., before the ldbr) with these additions.,
is illustrated in figure 2. If it is determined that
the target process is unloaded., entry point createseg.,
in Segment Control (see Section BG.3), is called twice
to build both a hardcore ring descriptor segment and an
Interim Process Data Segment for th~ unloaded process.
Createseg if successful returns a parameter whose value
is a segment descriptor word which points to the newly
created segment. A segment created by createseg is wired
down and can only be destroyed by an explicit call to
entry point killseg in Segment Control. Createseg can
fail to create a segment if there is a shortage of core
space and in this case it performs an error return to
s11vap_dbr.

If both calls to createseg are s~ccessful swap dbr then
proceeds to initialize the two segments by copying from
template segments. That is., a template descriptor segment
and a template Interim Process Data Segment (see Section
BJ.5"06) are available from vJhich swap_dbr mere·y copies.
Svvap_dbr then sets QQ. the target's process loading switch.,
a data item in the target's Active Process Table entry.,
which defines the target process to be in the state bet\veen
loaded and unloaded. Once this has been done the calling
process has fulfilled its obligations to the unloaded
process and swap_dbr now continues with the program outlined
in the basic- outline.

If either ca 11 to createseg fai 1 s s~tJap_dbr must execute
the proper error sequence. The error sequence has two
objectives. The first is that a proper error return be
gieven to getwork. The second is that processor usage
expended in this futile loading effort be properly accessed.
If the second call to createseg fails the now useless·
segment created by the first call must be destroyed by
a call to killseg. Then the Active Meter Table index
of a special "idle time" account is entered into the Processor
Data Blo~k of this processor. This account is only charged
vvhenever sv.Jap_dbr is unsuccessfu1 in a loading operation.
Swap_dbr then performs an error return to getwork. If

MULTICS SYSTEM-PROGRAf'ir~ERS" fv1ANUAL ·SECTION BJ .5 .01

the first call to createseg fails then all that needs
be done is to enter the "idle time'' account number in
the Processor Data Block and perform the error return
to getwork.

PAGE 8

To tabulate the extra steps taken in swap_dbr by the calling
process:

2.01. The target's not loaded switch is tested. If
it is off (the targ~t is loaded) go to step 3 of the basic
out 1 ine.

2.02. Entry point createseg is called to create an.
empty wired down segment large enough for a hardcore ring
descriptor segment. An error return from createseg goes
to step 2.07.

2.03. Createseg is called again to create an empty
wired down segment large enough to contain an Interim
Process Data Segment. An error return from createseg
goes to step 2.06.

2.04. The target's process loading switch is set on
and the contents of the template descriptor segment and
the template Interim Process Data Segment are copied into
the two newly created segments.

2.05. Go to step 3.

2.06. Entry point killseg is called td destroy the
segment created in step 2.02.

2.07. The Active Meter Table index of the special
11 idle time" account is assigned as the account to which
current pr cesser usage should be charged.

2.08. Error ret rn to getwork.

Now let us consider t~e additional steps taken by the
target process in s11vap_dbr to enable loading of processes.
(These steps can be inserted between steps· 11 and 12 of
the basic outline. The second half of swap_dbr, with
these add tions, is illustrated in figure 3.) These steps
are only taken by the target if the target is unloaded. ·

Once the target process is in control and after it has
taken care of the housekeeping tasks described in the
basic outline, the target determines whether it is unloaded.
If it is, then it must restore itself to its previous

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 9

'
loaded state before attempting. to return to whateve~ it
was doing the last time it was running. A process restores
itself by loading itself (i.e., its Process Data Segment)
and by recreating the hardcore descriptor segment that
it had before it was unloaded. These two steps are handled
in two distinct. subroutines that are called from swap dbr.
Respectively they are, entry point pb) in the Process
Bootstrap Module (see Section BJ.5.03 and entry point
·overlay (sectio~· BJ.S.OS).

\
Specifically the entire procedure is as follows. If the
target process finds its not loaded switch gn it turns
the switch offa!ld calls entry point pbm in the Process
Bootstrap Module. The Process Bootstrap Module basically
restores the process' Process Data Segment to wired down
core. (This module also restores· to wired down core all
non-standard versions of hardcore supervisor segments
that this process uses. However this added complexi.ty
c~n be ignored by the reader since the Process Data Segment
is an example of a special hardcore supervisor segment
that this process use£. Everything done for the Process
Data Segment is repeated for each other special segment
and therefore the entire mechanism is revealed. Normal y
a process uses no other special segments. See Section
BJ.5.03 for a complete description of the Process Bootstrap
Module.) One point should be noted when discussing the
retrieval of the Pro ess Data Segment. Hard~tJare and software
restrictions in Multics impose a constraint on aJl processes
executing on a processor in the.System. This restriction
is that at a known (and constant from process to process)
segment number in th address space of the process~ there
exists a wired down stack that is'usable to store machine
condttions at faul.t and interrupt time. In the loaded
process this stack is the Process Concealed Stack contained
in the Process Data Segment. That is, the descriptor
segments of all loaded processes have in the same relative
location a segment descriptor word that points to their
Proce s Data Segment. For srmpri~city let us suppose that
this segment descriptor word is the jth such descriptor
word. (I.e.i this segment is segment number j.) In the
loading process this wired dovm segment is the Interim
Process Data Segment which means that all loading processes
access their Interim Process Data Segment as segment number
j; Therefore in order for a loading process to restore
its Process Data segm~nt to core, while retaining its
Interim Process Data Segment, it must retrieve the actual
se~m~nt by ~iving !t ~segment number d~fferent than j.
(S1m1larly 1n retr1ev1ng any other spec1al segments, a

,· ..
i.-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 10

process must ret(ieve each by a segment number distinct
from that of the segm~nt which the special segment is
meant to replace.) For simplicity let us say that the
Process Data Segment is retrieved as segment k •

•
Let us rephrase'· the above and cent inue. If swap_dbr determines
that the target~is unloaded, it calls the Process Bootstrap
Module to load the Process. Return from this module implies
the process is c'ompletely loaded. That is, its. Process
Data Segment and any other special segments this process
uses are in wireq down core. However the segments have
been assigned segment numbers different from those of
the segments they are meant to replace. In the case of
the Process Data Segment, it has been assigned segment
number k, while it is meant to re~lace the Interim Process
Data Segment, now known by segment number j.

In order to resolve this question of segment numbers,
overlay is called. Basically all this procedure does
is to overlay the segment descriptor words for all special
segments into the locations in the descriptor segment
currently occup'ied by the segment due to be replaced.
In the case of the Process Data Segment, overlay will
pick up the se~ment descriptor word located at location
k in the descr1ptor segment and deposit it into location
j, thus li'Jiping the Interim Process Data Segment out of
the address space of the process. In order to retain
a handle on the Interim Process Data Segment, the segment
descriptor word for the segment is saved before the call
to overlay. On return from overlay, entry point killseg
is called in order to destroy the 'now useless segment.

Overlay is called using the Process Concealed Stack, therefore
before the call swap dbr S\vitches stacks from the Interim
Process Concealed Stack.. O.nc..e the stacks have been s\•Jitched,
swap_dbr stores the needed segment descriptor word in
the Process Concealed Stack and then ca,lls overlay. On
return from killseg the entire operation is complete and
the target can reset its loa.ding switch.

Actually one small point has.been neglected in the above.
This point has to do with the interaction of subroutine
quit (see Section BJ.3.G3) and processes that are loading.
Processes that are loading cannot beunloaded. This is
because these processes have data in segments (for example
the Interim Process Data Segment) which cannot be paged
out because they have no corresponding file in secondary
storage. Quitting a process stops it from executing indefinitely.
If a loading process \IIJere stopped indefinitely its unpageable

' ':· -~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 11

segments would remain in core indefinitely. Therefore
it is necessary to delay quits meant for a loading process
until the process is completely loaded. This is done
by special considerations in subroutine quit and swap_dbr.
Quit on being called to quit a loading process merely
sets on the process' quit waiting switch 1 a data item
in the process' A):tive Process Table entry. Swap_dbr
for its part tests the quit waiting switch upon changing
the target process' state from loading to loaded. If
swap_dbr finds the quit waiting switch £D. it turns it
off and itself calls quit for the target process. That
is the target process calls to quit itself.

Regrouping and tabulating the entire extra sequence contained
in the second ha 1 f of swap_dbr: .

11.01 The target's not loaded switch is tested. If
it is off go to step 12.

11.02 Turn off the target's not loaded switch.

11.03 ·call entry point pbm in the Process Bootstrap
Module.

11.04 Switch stacks so that the Process Concealed
Stack is being used.

11.05 Store the $egment descriptor word of the Interim
Process Data Segment into the current stack •.

11.06 Ca 11 over 1 ay.

11.07 Call killseg passing the stored segment descriptor
\r.Jord as an argument.

11.08 Turn the target's loading switch off.

11.09 The target's quit waiting switch is tested.
If it is off go to step 12.

11 • 1 0 Turn off the target.'s quit waiting switch.

11.11 Call subroutine quit passing as an argument·
the target's Active Process Table index. (i.e., the target
calls quit for itself.)

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ~S .01 PAGE 12 ,

Complete Specification of Swap-dbr

With several processes possibly executing in the Process
Exchange concurrently~ steps must be taken to coordinate
their actions. In particular, two general steps have
been taken. First, certain interlocks and switches have
been established in the Process Exchange data bases.
By observing common rules about the interlocks and switches,
the various modules areable to guarantee the integrity
of the data with which they deal. Secondly, at certain
well defined points while some of these interlocks are
set, the processor referencing the locked data must be
masked against all interrupts. This is to prevent the
possibility of putting a processor into an infinite loop.
(For a complete discussion of coordination in the Process
Exchange, see section BJ.6.)

In swap_dbr several such coordination actions appear.
In particular, two data switches, not previously mentioned
in this document, are reset in swap_dbr and ·two interlocks
are encountered while swap_dbr goes about the tasks previously
described. The two switches not mentioned are the calling
process' intermediate-state switch and the target's chosen
switch. Both of these data i terns are per process sw1 tches
which reside in the respective Active Process Table entries.
The two interlocks are the ready list lock, an interlock
on the entire re~dy list, and the process state lock of
the target process, a per process interlock \"hich controls
access to that process' Active Process Table entry.

Before proceeding, let us look at:the four data items
themselves. The intermediate-state switch of a ~roces~
if 2.!1 indicates that the process may be 11 executing11 even
though its Active Process Table entry indicates that the
process is either ready or blocked. Because a process
cannot redefine its execution state and stop executing
instantaneously, such an intermediate state is unavoidable.
The intermediate~state switch is used merely to indicate
when this is the condition of the process. A process
turns on its intermediate-state switch whenever it enters
subroutines block or restart. The switch of the calling
process in swap_dbr is turned off by the target almost
immediately after the ldbr is executed. That is, the·
calling process' intermediate-state switch is turned off
after it is out of this intermediate state.

The chosen switch of a process can only be .Q!l if the process
is on the ready list. If on the switch indicates that
the process has alre~dy been chosen to run and should

•

MULTICS SYSTEM-PROGRAMf~ERS' MANUAL SECT.ION BJ.5.01 PAGE 13

not be considered a suitable candidate for running. The
switch of a process is set on in getwork when get\.IIJork
chooses this prcicess. This process then becomes the target
process in swap_dbr and the switch is reset \i'Jhen the target
removes itself from the ready list. This structure, of
getwork choosing processes and swap_dbr removing them
from the ieady list, enables getwork to accept an error-return
from s~v,Jap_dbr vJithout havin~ to place the intended target
process back in the ready 11st.

The ready list lock is an interlock which simply controls
access to the enfire ready list. The ready list may not
be referenced by ~ process unless the process has already
set the lock. The ready list lock, in the jargon of the
Multics File System~ is a loop lock. That is~ a process
trying to set the lock loops until the lock is setable.
All interrupt handlers must be able to use the ready list
and therefore a 11 interrupts must be masked vJhenever the
ready list is locked. This masking is necessary to prevent
putting a processor into an infinite loop.

The fourth and final data item is the process state lock
of a process. This per process interlock controls access
to data items contained in the Active Process Table entry
in which the interlock itself is located. In particular,
swap~dbr uses three of the data items controlled by this
interlock: the ready switch, the running switch~ and the
quit waiting s"vi tch. In genera 1, a process may on 1 y look
at the controlled data items belonging to itself or another
process if it has already locked this interlock. This
interlock is also a loop lock and again all interrupt
handlers must be able to lock the process state lock of
any process. Hence a 11 interrupts are masked in S\i'Jap_dbr
v-Jhenever the target .. s process state lock is locked.

In the basic outline of swap_dbr it \i'Jas assumed that a 11
interrupts ""'ere masked throughout the entire execut j_on
of the routine. Now we only assume that all process interrupts
are masked throughout the entire routine while more encompassing
masks are used for 1 imi t':=d port ions. The reason for IT'.ask ing
process interrupts is to prevent s~.r.Jap_dbr from being. entered
recursively. Recall that all process interrupts have
as their end resu 1 t the ca 11 ing of s~r;ap_dbr by the interrupted
process. Therefore, acceptance of a process interrupt·
in swap_dbr vJould indeed mean a recursive call to S\rJap_dbr.
In contrast~ system interrupts need only be masked vlhile
critical data items are locked.

' .

'-..__

MULTICS SYSTEM-PROGRAr-1MERS' MANUAL SECTION BJ.5.01 PAGE 14

Finally we are in a position to completely specify swap_dbr.
First we will describe the strategy of setting the two .
switches and then we will describe the interlocking scheme.
All additions entailed by this specification occur in
the second half of SlrJap_dbr and therefore figure 2 is
still accurate as an illustration of the first half of
swap_dbr.

Immediately after the target loads base register sp (step·
9 of the basic outline) the ~arget turns off the intermediate
state switch of the calling process. The other switch,
the target's chosen switch, is reset immediately after
the target removes itself from the ready list (step 11
of the basic outline). The target's process state lock
is encountered when the target redefines its state from
ready to running and also when the target tests its quit-waiting
switch. Finally, the ready list lock is encountered when
the target removes itself from the ready list.

Swap_dbr .is completely tabulated below. The level of
qualification of the step number indicates when the step
was added. That is, step number x is in the basic outline,
step number x.xx was added to enable loading, and step
number x.xx.xx was added in the final specification.

1. Processor usage is accounted for.

2. Timer runout interrupts are drained.

2.01 The target's not loaded .switch is tested._ If it
is off (the tar~Jet is lo'aded) go to step 3.

2.02 Entry point createseg .is called to create an empty·
wired dov.m se9ment large enough for a hardcore ring
descriptor se9ment. An error return from createseg
goes to step 2.07.

2.03 Createseg is called again to create an empty wired
down segment large enough to contain an Interim
Process Data Segment. An error return from createseg
goes to step 2.06.

2.04 The target's process loading switch is set .Q!2 and
the contents of the template descriptor segment and
the template Interim Process Data Segment are copied
into the two newly created segments.

•

0.'·· .. · .. { ··: .. J
'.., ;_,;

: .,. \

MULTlCS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ .5 .01 PAGE 15

2.05

2.06
segment

2.07

2.08

3.

4.

s.

6.

7.

8.

9.

9.00.01

9.00.02

9.00.03

10.

10.00.01

10.00.,02

11 •

Go to step 3.

Entry point killseg is called to destroy the

created in step 2.02.

The Active Meter Table index of the special overhead
account is a~signed as the account to which current
processor usage should be charged.

Error return to getwork.

The timer register is reset with a new value and a new
account number is established

Quit interrupts are drained.

The calling process stores the current value of base
register sp into its Process Data Block.

The segment descriptor word of the Processor Data
Segment for this processor is loaded into the A
register. It is obtained from the calling process'
descriptor segment.

The ldbr instruction is executed. The operand of
this instruction is the absolute address of the base
of the target's descriptor segment.

The A-register is stored into the target's descriptor
segment.

Base register sp is loaded with a new value. This
value is obtained from the current (i.e., th~ target's)
Process Data Block.

Reset calling process' intermediate-state switch.

The present processor mask is saved and the processor
is masked against all interrupts.

The target's process state lock ·is locked.

The target's ready switch is set off and its running
switch is set gn. ---

The target's process state lock is unlocked.

The ready list is locked.

The target removes itself from the ready list.

. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 16

11.00.01 The ready list is unlocked.

11.00.02 The previous processor mask is restored.

11 .00.03 The target's chosen switch is turned off.

11.01

11.02

11.03

11.04

11.05

11.06

11.07

11.08

11.08.01

11.08.02

11 .09

11. 10

11.10.01

11. 10.02

11 • 1 l

12.

The t~rget's not loaded switch is tested. If it
is off·;: go to step 12.

I·

1
Turn oftf the target's not loaded switch.

Call en~ry point pbm in the Process Bootstrap Module.

Switch stacks so that the Process Concealed ~tack
is being used.

Store the segment descriptor word of the Interim
Process Data Segment into the current stack.

Ca 11 over 1 ay •

Call killseg passing the stored segment descriptor
word as an argument.

Turn the target's loading switch off.

Save the present mask and mask all interrupts.

The target's process state lock is locked.

The target's quit waiting switch is tested. If it
is off unlock the target's process state lock and
res tore the pn~v ious mask and go to step 12.

Turn off the target's quit-waiting switch.

Unlock the tanget's process state lock.

Restore the previous mask.

Call subroutine quit passing as an argument the
target's Active Process Table index. (i.e .• , the
target calls quit for itself.)

Swap_dbr returns to its ca·ll er.

'~ (. .)
', .:.!

MULTICS s·YSTEM:..PROGRAMMERS' MANUAL SECTION BJ .5 .01 PAGE 17

r!rapup

One last thing should be rtoted at this point. The ldbr
instruction may only be executed in master mode. In order
to isolate this from the rest of s~;Jap_dbr, the actual
instruction is contained in a distinct master mode segment.
Actually, steps 5 through9 are all contained in the master
mode routine,· Jdbrl (see section BJ.5.04), since these
steps must be executed while the processor is inhibited.
In this v-1ay, the rest of swap_dbr can be executed in slave
mode. Figures 4a and 4b provide a complete illustration
of swap_ db r •

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.S.Ol PAGE 18

Call swap dbr (K)

t
call

meter_cpu

+ ,

drain
timer runout
interrupts

~
Reset timer
and establish
new account

number

+
Drain
quit

interrupts

+
Store Sp
in Process

Data Block

~
lda the sdw
of the pro-
cessor Data
segment

~
-

ldbr (K)

l
sta into set process Remove K

Descriptor load Sp ~ K to ~ from ready

Segment running list

+
Figure 1. Basic Outline of Swap_dbr. c return

:·)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.S.Ol . PAGE 19

r:so to
\:...rror-re turn

.,, :

store accoun error
of overhead return

I•

' •,·
'

while ~n process, call swap-dbr (K,error_retur

t
call
meter_cpu

Drain
timer run

>ut ~nterrupts

account into •

Call createse~
for descrip
to segment

No),
1-----_;_-.....,::::.::..._ ____ ..t' . K

Processor Dat< from
Segment createseg

'----......---...!

loaded'?

·Yes

reset
• timer and

~--~---~---~establish

Call Killseg
for descrip
to segment

error
return

t-.all createseg
for interim

l<li-1-----L ..-from Process Data
createseg Segment

1Ini tialize
~escriptor se~
[!lent and Intet
~m Process
Data Segment

-·

Set Process
loading switch
for K

Figure 2. Flow dia~ram of first half of
swap_dbr with addit1ons to enable loading
of processes.

new accourt

t
drain
quit
1.nterrupts

store
value of

sp

lda with
sdw of
"Qrocessor
nata seg.

+
ldbr(K)

. I

MULTlCS SYSTEM-PROGRAMMERS~ MANUAL

switch
stacks

call turn off
PBM not load

ed switch

SECTION BJ.S.Ol

ldbr(targe)

sta into
descripto
segment

load
SP

remove
target fm
ready lis

I

I

PAGE 20

I call I 1
overlay

I
I
I
I
I
I

call

killseg

turn off
loading
switch

call
quit (tar- t---+------1...,

get)

I
return

-·

·-·----- --
I

_I
Figure 3. Second half of swap_dbr with additions to enable
loading of processes. The aditions tothe basic outline are
enclosed in the dashed line.

·~ i ')
•: ,,/

.·) .,

')' ..

. •·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.S.01 PAGE 21

\'

\

call
store account
of overhead error
account into Ire turn No Processor
!Data Segment

creatseg for~--------------~~~---------<
from descriptor

L--....--r----·.~~;;"'reateseg Segment

Call Killseg
for descripto

segment

error call
return~ ~reateseg for

from - interim Proce s
createse~pata Segment

lr

Initialize
descriptor
and interim
Process Data
Segment·.

..

Set Process
loading .switc

for K

-

call
me fer_ cpu

,
drain,
E~mer
runout
~nt:errupt~

is
K

loaded?
Ye

lr

Reset
timer and
establish
new a:ccoun t

Drain
quit

interrupt

~
Call

ldbrl(K)

ct
Figure 4a. Complete specification of first half of

· swap_dbr.

s

· •. ·-:

. ')
. -··

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.S.Ol PAGE ·22

Call
overlay

Call
,kills~g

turn off
loading
switch

save mask
Mask all
nterrupte s,

state
lock

reset
caller's

intermed
ate state

.store sdw
·,for Inter
Process
Data .Se m nt

.·

save mask
ina.sk all
interrupt

switch

s.tacks

unlock

,.

___ ..,.,.

. lock tar
gets .. pro-

cesskstate c .

call

Pbm

res·tore
previous

•. mask.

restore
previous

mask

set tar
get to
running

turn off
not loa.de
switch

can··

unlock
state
lock

lock

f~ady 1St

remove
~g~et
ready lis

. ~-ft.(..

unlock
.ready
list

restore
previous

mask

Figure 4b. Complete specification of second half of
swap_dbr •

•

ch

