
MUL TICS SYSTEM-PROGRAt~fv!ERS" f.'lANUAL 
t3 

SECTION BJp".04 PAGE l 

Published": 03/23/67 

Identification 

LDBR Procedure . 
R. L. Rappaport 

Purpose 

Ldbr (Load Descr'.iptor Segment Base Register) can only 
be executed in m·aster mode. The ldbr procedure is a master 
mode procedure used to isolate the ldbr instructions needed 
in the Process Switching Module (see Sections BJ.5.00-BJ.5.02). 

Discussion 

An ldbr instruction cannot be executed in slave mode and 
in the Process Switching Module there are three places 
where this instr0ction must be executed. In each of these 
places a ca 11 wi 11 be made to one of the three entry points 
provided by the ldbr procedure. The reason for three 
distinct entries is tha.t each ldbr must be executed within 
a certain context of instructions, which is different 
in each case. The three entry points are Tdbr _1, ldbr_2, 

·and ldbr_3. They are all called \IIlith a standard calling 
sequence.· That is: 

1 - ca 11 1 dbr _1 

2 - ca 1 1 1 db r _2 

3 - ca 1 1 1 db r _3 

(ds); 

~ds }; 

(ds); 

where in each case ds is the value with which the descriptor 
segment base register is to be loaded. 

Ldbr 1 

Ldbr 1 is called in S\ivap dbr (see Section BJ.5.01). The 
context in vJhich the ldbr instruction is executed in ldbr 1 
is dictated by the nature of S'Hap_dbr. Sltvap_dbr is called 
when one process (the caller) wants to give unconditional 
control of a processor to another process (the target). 
In order for the target process to be able to service 
interrupts on this processor, certain information must 
be accessible in the target's address space. In particular, 
the Processor Data Segment, of this processor, must be 
a·segment in this address space and the target's process 



.(). 

/~~\ 
. ~-·.~:;/ 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.04 PAGE 2 

id must appear in this Processor Data Segment b~fore any 
interrupts can be serviced. Therefore the ldbr instruction·· 
must -be followed by three instructions which store these 
data items into the target's address space and the three 
instructions must be executed while the processor is inhibited 
in order to prevent the servicing of interrupts during 
this time. · 

The steps taken by 1dbr_1 are tabulated below. It should 
be noted that this routine does not do a standard save. 
This faci 1 itates the creation of a stack for loading processes. 
Also note that the instructions before the ldbr are executed 
in the address space of the caller and all references 
to the descriptor segment or the Process Data Segment . 
refer to those of the caller process while after the ldbr# 
such references refer ·to the segments of the target. 

1. The caller stores th~ current value of base 
register sp into its Process Data Segment. This enables 
the caller to reset its stack pointer the next time it 
resumes control. 

2. Index register 1 is loaded vJith the segment 
number of the Processor Data Segment. This step implies 
this segment has the same number in each process. This 
register will be used as an index into the descriptor 
segment in order to pick up and store the segment descriptor 
word for the Processor Data Segment. 

3. The segment descriptor word of the Processor . 
Data Segment# for this processor# ;is loaded into the A-register. 
This is done in order to pass along this word to the target. 
The segment descriptor word is obtained from the caller's 
descriptor segment. 

4. (Inhibit on) The ldbr is executed. 

5. (Inhibit on) The A-register is stored into the 
location in the target's descriptor segment reserved for 
it. 

6. (Inhibit on) The combined AO register is loaded 
with the process id of the target. This id is obtained 
from the target's Process Data Segment. 

7. (Inhibit on) The AQ register is stored into 
the Processor Data Segment. 



I. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.04 PAGE 3 

B. Base register sp is loaded with the value stored 
the last time the target was running. 

9.. The other base registers are restored with their 
previous values. ihe values were stored in the process 
c~oncealed stack at the time of the call to ldbr_l. 

10. The register·s are restored with the values they 
had when the call to ldqr_l was made by the target. 

11. A.· return transfer is made to swap dbr. 

The actual machine code contained in ldbr 1 is listed 
be 1 ow. <pds>, <prds>, <ds> are Precess Data Segment, .. 
Processor Data Segment and descriptor segment respect1vely. 

ldbr _1: stbsp <pds> I [last~sp] 

1 dx 1 <prds> I [ segno] 

lda ·<ds>l0,1 

inhibit on 

1 db r ap 12, -!• 

sta <ds> I 0, 1 

ldaq <pds> I [proce~sid] 

staq <prds> I [proqess id] 

. i n h i b i't off 

ldbsp <pds>l[last_sp] 

ldb splo 

lreg spf8 

rtcd spl20 



.. 

~ 
!'- . J 

I --~:.·· __ :.; 

( ... \ 

MULTICS SYSTEM-PROGRAM~lERS' MANUAL SECTION HJ.5 .04 PAGE 4 

Ldbr 2 

Ldbr_2 is called from ready-him (see Section BJ.5.02). 
It is called using the Processor Stack (contained in the 
Processor Data Segment). Ldbr_2 is simpler than ldbr_l 
in that the value of sp need not be saved and restored 
since both processe-s use the same stack and also in that 
the target's process id is not stored into the Processor 
Data Segment since the c~ller is still considered the 
process in charge. The other steps are quite similar 
to the ones in ldbr_.l and the code is presented below. 

ldbr 2 • - . ldx1 <prds> I [ segno] 

lda·· <ds> fO, 1 

inhibit on 

ldbr apf2, * 
sta <ds> I 0, 1 

inhibit off 

ldb spiO 

1 reg sp(8 

rtcd sp(20 

Ldbr 3 

Ldbr _3 is called in ready-him in order to return the processor 
to the caller. At this point~ all that needs to be done 
is to switch descriptor segments~ restore the bases and 
return. The code is·presented below. 

ldbr_3 ldbr 

ldb spfO 

rtcd spl20 



.... • e 

MULTICS SYSTH1-PROGR.4MMERS' f.1ANUAL SECTION BJ.5.04 PAGE 5 

I!Jrapup 

Since this is a rnast~r mode procedure, entry can only 
be made at its initial entry. There a few instructions 
will be located which validate the call. In particular, 
these instructions will verify that the address specified 
by the argument in the call actually points to a descriptor 
segment. If trouble is observed an error condition 1tJi 11 
be noted and action will be taken similar to the action 
taken at the time of a trouble· fault. If no trouble is 
encountered; a branch will be made to the appropriate 
entry point. 


