
MULTICS SYSTEM-PROGRAMMERS' MANUAL
(3

SECTION BJ .f. OS PAGE 1

Pub~ished: 03/24/67

Identification

Sub rout i ne Over lay
R. l. Rappaport

Purpose

Subroutine Overla" is a master mode procedure which restores
a loading process descriptor segment to the state it
was in before the process was unloaded. .

Introduction

Various hardware and software considerations require that
certain hardcore supervisor modules be known by ~he same
segment number in each process. Even though distinct /
processes may have distinct versions of on·e of these modules,
the copy in each process is known by the same segment
number. For example, machine conditions at the time of
a fault are.saved in the Process Data Se~m~nt of the process
which exper1enced the fault~ These cond1t1ons are stored
using ITS pointers located at known absolute locations
in core storage. The ITS pointers are initialized·at
system initialization time (see Section BL.O). Each process
has its own distinct Process Data Segment and since these
ITS pointers must point to the Process Data Segment of
a process whenever it is executing, this segment must
be known by the.same number in each process. The segments
which must be known by the same number in .each process
are called the special segments throughout this document.

Discussion

In order for a process to function in the system the process
at all times must have a consistent set of these special
segments each known by the correct segment number. When
a process is unload~d its descriptor segment is destroyed.
In initiating the reloading of a process in swap_dbr (see
Section BJ.S.01), the calling process in Slf.Jap dbr creates.
a standard descriptor segment for the unloaded target
process. This standard descriptor segment is created,
in the main, by copying from the template descriptor segment
(see Section BJ.S.06)~ This descriptor segment contains
segment descriptor words for a standard consistent set
of special segments. In particular, in the location reserved
for the Process Data Segment, this descriptor segment

· _

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.05 PAGE 2

contains a segment descriptor word for an Interim Process
Data Segment. This Interim segment is explicitly created ·
for the unloaded target process at the same time the standar,d
descriptor segment was created. Once the unloaded target
process gains control of the processor it goes about retrieving
its lost special segments. It does this in two steps.

The first step in retrieving the lost special segments
consists of obtaining valid segment descriptor words for
the individual segments. That is~ the segments are activated~
if not already active,. and the segment descriptor words
are placed in the newly created standard descriptor segment.
However,. these se~ment descriptor words are not placed
in the locations 1n which they will ultimately reside ..
For example~ suppose the Process Data Segment is known
in each pr cess as segment number K. When reactivated
by the loading process, it will be reactivated as segment
number J :/: K. ·This is done so that the process never
has an inconsistent set of segment descriptor words in
the reserved locations in its descriptor segment. Some
of the special segments reactivated in this way are segments
that must be wired down whenever the process uses them.
All such special segments are wired down at the time of
their reactivation. An example of a segment which must
be wired down is the Process Data Segment of the process.
This reactivation and partial wiring of special segments
is accomplished in the Process Bootstrap tvlodule (see Section
BJ.5.03) which is called from swap_dbr immediately after
the unloaded target process gains control.

Upon return from the Process Bootstrap Module, all the
special segments of a process have segment descriptor
words in the process' descriptor segment. However, they
are located in the wrong locations. It is therefore time
to overlay these segment descriptor words into the appropriate
locations. This overlaying is done at one time while
the processor is inhibited so that, from the outside,
the process always appears to have a consistent set of
special segments. This overlaying is accomplished in
subroutine overlay which can now be specified completely.

Specification of Overlay

Overlay is called from swap dbr after swap dbr receives
a return from the Process Bootstrap Module:- Overlay is
called on the Process Concealed Stack (which is contained
in the Process Data Segment). However, at this time,

, .. ,·-~

< __ ~)

MULTICS SYSTE,..1-PROGRAt-1MERS" MANUAL SECTION BJ.-5.05 PAGE 3

the -Process Data Segment is being referenced by the segment
number by which the segment was retrieved rather than
by the one that· is norma l1 y used by loaded processes.
This is because the process entering Overlay s~i 11 ·has
a segment descriptor word for the Interim Process Data
Segment in this location. The ca 11 ing sequence for over lay
is simply:

ca 11 overlay; .

In the process definitions segment (see Section BJ.l.OO)
of the process there is a table which relates the segment
numbers by which special segments are retrieved and the
segment numbers by which they are known. Overlay begins
by making a copy of this table in the Process Concealed
Stack. This is done to place this data into wired-down
storage. The actual se~ment descriptor words are overlayed
while the processor is 1nhibited and no page faults can
be tolerated while this is going on. Once this data is
in wired-down storage overlay inhibits the processor and
then ripples through the table overlaying the indicated
segment descriptor words. Having changed the segment
descriptor words~ the associative memory of the processor
must be cleared in order to destroy any invalid associations.
Finally# while the processor is still inhibited# base
register sb must be redirected from the segment number
by which the Process Data Segment was retrieved to the
segment number by IJIJhich this segment is known. This step
is taken so that if a fau 1 t occurs#· the Fau 1 t Interceptor
Module (see BK.3.01) can determine whether the Process
Concealed Stack is empty or not by testing the value stored
in register sb. At this point the processor can be uninhibited. ·
Before returning~ ove~lay modifies the value of sb stored
on the call to overlay. This is to enable the return
to work correctly. ·

-Over lay is described step by step below and illustrated
in. f i gu re 1 •

1. Copy contents of specia 1 segment table into wi red-do~tm
data base.

2. (Irihiblt on) Load the A-register with the next segment
descriptor word that is to be overlayed.

3. (Inhibit on) Store the A-register into the appropriate
location in the descriptor segment.

1~.
I. }

MULTICS SYSTEM-PROGRAT-1MERS' MANUAL SECTION BJ.5.05

4. (Inhibit on) If all the segment descriptor words
have not been overwritten go to step 2.

5. (Inhibit on) Clear the associative memory.

6. (Inhibit on) Reload base register sb.

7. Modify the value of sb stored in the stack.

8. Return.

Wrapup

PAGE 4

Throughout this document there has been considerable discussion
of the set of special segments of a process of which the
Process Data Segment is an example.· In most cases, this
is the only special segment that a process has. In an
attempt to remain general the discussion was carried through.
assuming s~veral special segments.

"·'::: '
! ' ,.,, ;.:. '

'_ -C8Y- .
MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BJ.S.OS

·,, _- call overlay

Copy contents
df special '
$'eg table in :
to wired_ core

PAGE 5

1--------- ,. ---
l

l
I
J

I
I
I

I
I

I

I

' I
I
t

-1
r
l

I

L__

lda with
~----..w sdT,T for- next

segment

sta
sdw

Clam

reset
sb

I

I
I

I

I

I
I
I
I
~

I
__________ _j

Figure 1 Flow Diagram of Overlay

Modify
Stack ~C Return)

