
..
"'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.3.01 PAGE 1

Pub 1 i shed: 1 , I 3 0/66

Ldent if icat ion

Block
R. L. Rappaport

.Purpose

Entry point p]ock in the Process Exchange is the mechanism
by 'J'Jhich processes~ waiting for external events to occur~
give.away control of the processor on which they are currently
runn1ng.

Pre fa~

The description of block that follows is divided into
two sections. The first section presents the basic outline
of the subroutine. This vvould be an adequate description
if it could be assumed that execution of the subroutine
wi 11 take. place while:

1) The processor is completely masked against interrupts.

2) .4 global interlock is on which denies access to the
Process Exchange to all processes except the one
in which this subroutine is currently executing.

The second section is a complete specification that describes
the steps that must be taken to allow more than one process
to be concurrently executing in the Process Exchange.

SQ.s i c ou_U i ne

Processes calling entry point block are processes which
cannot or do not wish to continue executing until some
event of interest to the process takes place. Basically
block goes through three steps.

1) It determines ~1ether an event of interest has
already occurred. It does this by checking the
status of tf1e wakeup-vJaiting svJitcll for the
calling process. This switch is one of the data
items in tne·process 1 entry in the ~ctive Process
Table. If the switch is on, .Q.Jock resets it to
off and performs an immediate return to its caller
instead of giving away control of the processor.
If the switch is off, blo~k continues 'vvith tf1e
next step.

I
,.-..,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ. 3. 01 PAGE 2

. 2) It sets the state of the process~ as defined by
switches in·the Active Process Table entry for
the process~ to the 11 blocked" state.

3) It calls ~etwork in order to give away the processor.
Return is experienced from getwork only after an
event of interest has occurred. Upon return from
~etwork~ block resets the wakeup-waiting switch and
returns to its caller.

The calling sequence for block is simply:

ca 11 b 1 ock;

and the stack used in this call is the calling
process' Process Concealed Stack. Calls to block
from within the hardcore supervisor use the Process
Concealed Stack to make the call directly. Calls
to bl.Q..ck from outside the hardcore supervisor are
directed to a module knovm as the validator (see
Section 80.8) which performs the necessary stack
switching.

Figure 1 illustrates the basic outline of block.

.G..omg·l e te"-S.Qec if i cation of 81 ock

With several processes possibly executing in the Process
Excha~ge concurrently~ steps must be taken to coordinate
their actions. In particular~ two general steps have
been taken. First~ certain interlocks and switches have
been placed in the Active Process Table entry of each
process. By observing common rules about the interlocks
the various modules are able to guarantee the integrity
of the data ~tJith which they deal. Secondly~ at certain
times \vhi le some of these interlocks are set~ the processor
referencing the locked data must be masked against all
interrupts. This is to prevent the possibility of putting
a processor into an infinite loop. (For a complete discussion

.of coordination in the Process Exchange see section BJ.6)

~ck makes three contributions to this coordination effort:

1. Upon entry block sets Qll the calling process• intermediate
state switch. This switch resides as a data item in the
calling process• Active Process "Table entry. If the
calling process• wakeup·-v11aiting svJitch is off~ blocl:s. will
change the process• execution state to the "blocked 11 state
before the process stops executing. The intermediate-

. state switch serves to notify other processes that although

/,.-.....'

MULTICS SYSTEM-PROGRAMMERS' MANUAL S E C T I ON B J . 3 . 01 PAGE 3

the proce~s is defined to be blocked it may actually
be executing. Therefore before the wakeup-waiting
switch is interrogated the intermediate-state switch
is set QQ.. If the wakeup-vJaiting svvitch is QO. block
resets the intermediate~state switch before the return.
If the wakeup-waiting switch is off the intermediate-
s tate s '-"' i t c h i s reset i n ~a o- db r (see sect i on B J . 5 . 01)
after the process has ceased executing.

2. Block makes use of several data items vvhich other Process
Exchange modules might also make use of. In order to
prevent fatal mishaps an interlock has been created wT1ich
controls access to these data items. The interlock is
the process-state lock which is another date item in each
process' P.ctive Process Table entry. The items to wT1ich
it governs access are:

3.

1 • The running switch

2. The ready svJi tch

3. The wakeup-vJa it i ng switch

The first two items define the process' execution state.
The third serves to notify vJhether or not some other
process is trying to "wakeup" this process. The running
switch and the ready switch of a process must never
be referred to or altered unless the process' process-
state lock has previously been set. 'tJhenever a process
ksts its Q\;'rn vJakeup-vJaiting svJitch, the process-state
lock must be .Qn. However, a process may turn off this
switch without first setting this interlock. (A complete
discussion of the use of this interlock is given in BJ.6.)
Therefore block must lock the process-state lock before
testing the wakeup-waiting switch. The lock must remain set
until after the process' execution state is redefined to
blocked or until it is determined that the ~.oJakeup-~.<vaiting
switch is on.

\r.lhi le the process-state iock is set the processor must be
masked against all interrupts. This is to prevent an
interrupt from being serviced whose handler might encounter
this same process-state lock. Therefore in block the
processor must be completely masked before the process
state lock is set and cannot be unmasked until this lock
is reset.

At this point we are in a position to completely specify
block:

1. The intermediate-state switch of the calling
process is set QJJ.

,.--

MULTICS SYSTEM-PROGRAMMERS' MANUAL StCTION BJ.3.01 PAGE 4

2. The current processor interrupt mask is saved
and the processor is masked against all
interrupts.

3. The process-state lock is locked.

4. If the wakeup-waiting switch is off, go to
step 5. Otherwise:

a) unlock the process-state lock

b) restore the previous processor
interrupt mask

c) turn off the intermediate-state switch

d) go to step 9

5. Set the process' execution state to "blocked".

6. Unlock the process-state lock.

7. Restore the previous processor interrupt mask.

8. Call getwork.

9. Reset the wakeup-waiting switch.

10. Return.

Figure 2 is a complete flow diagram of block.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Call JHock;

\

Set Process
State to
"blocked"

Call
Getwork

Yes

Reset
Wakeup-·
Waiting
Switch

Figure 1. Basic.Outline of Block

SECTION BJ.3.01 PAGE 5

Return)

. MULTICS SYSTEM-PROGRAMMERSr MANUAL

Call Block

,

Set on
Intermediate-
State
Switch

Save Current
Mask, Mask

All Interrupts

Lock
Process
State lock

Set Process
Execution Sta
to "blocked"

Unlock
·Process
State Lock

Unlogc
Process- {<>-

State Lock

-r Restore
Previous .
Mask

Figure ;z. Complete Flow diagram of ~lock

SECTION BJ.3.01

Restore

PrevioLs
Hask

Call

Get>vork

PAGE 6

Reset
Intermediate
State S>vitch

Reset
Wakeup-Haiting

S>vi tch

