
/ 

,.-
/ . MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.00 PAGE 1 

Identification 

Overview of stop 

Pub 1 i shed: 
(Supersedes: BJ.4.00 

Robert L. Rappaport- Michael J. Spier 

Purpose 

10/01/68 
01/30/67) 

Sometimes a process may wish to halt another process' 
execution. A typical example is that of a system operator 
who wants to stop all the processes in the system prior 
to a general system-shutdown. We name this operation 
the 'stopping' of a process; as a result of it- the target 
process is put into the 'stopped' state. 

Technically- a stopped process is similar to a blocked 
process- the difference being that a process is forced 
into the stopped state- and that it enters this state 
without the assurance that it might ever come out of it 
again. 

Qiscyssion 

As mentioned above- a stopped process is not guaranteed 
to ever run again; indeed# a stopPed process is more often 
than not on its way to being saved or destroyed. Consequently
putting a process into the stopped state must include 
safeguards to assure that the sudden disappearance of 
this process from the midst of an interacting multiplexed 
computer system will not cause any damage to the system. 

By definition- a process is the execution of a virtual 
processor within the boundaries of a private memory space; 
consequently- a process can cause system-damage only in 
places where its memory-space overlaps the memory-space 
of one or more other processes. By convention# all systemwide 
supervisor data bases are located in the hardcore ring. 
Rather than try and keep track of a process' execution 
in order to be able to find out whether or not it is 
currently manipulating such a data-base, it has been agreed 
never to stop a process while it executes in the hardcore 
ring. Thus it is guaranteed that a stopped process always 
leaves systemwide data-bases in a predictable state. 

Another delicate subject is that of restarting a stopped 
process- for example following a system shutdown# or after 
a user has been subJect .to an automatic logout. If a 
stopped process is stopped dead in its tracks" then in 
order to be able to restart it we would have to conserve 
its stack history symbolically (machine addresses are 
no good because by the time the process is restarted-
one or more of the hardcore procedures which it was 
executing might have changed). 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.00 PAGE 2 

Rather than go into all that expense~ a scheme is used 
which guarantees a standard (and known) ring 0 history 
for all stopped processes; thus in restarting a process 
one can reconstruct the process' history without actually 
having had to remember its stack. 

Stopping strategy 

The Traffic Controller entry point 'stop' is called whenever 
a process wishes to halt another process (or possibly 
it;self.) 

ca 11 stop(B) 

where 'B' is the target process' Io_ sets in that process' 
Active Process Table (APT) entry a flag known as the 
'stop_pending' flag_ and sends a wakeup to that process. 
Whenever a process is .chosen to run. that flag is placed 
in the processor's interrupt cell which is assigned to 
the stop interrupt. 

A process is masked against that interrupt for as long 
as it executes in the hardcore ring. Whenever a process 
abandons its processor. the stop interrupt cell is remembered 
in the process' stop-pending flag. This strategy insures 
that a process does not lose the received stop signal. 
and that it will not be affected by that signal as long 
as it is in the hardcore ring. 

As soon as the process executes outside of the hardcore 
ring (as soon as the stop interrupt is unmasked) it gets 
'hit' by the stop interrupt; it diverts its execution 
into the stop-interrupt handler which in turn calls the 
Traffic Controller. 

ca 11 i_stop 

Subroutine i~stop puts the process' APT entry on the list 
of blocked processes and gives its processor away. Thus 
the process is made to stop itself and therefore leaves 
its ring 0 history in a known state. 

There is only one case in which a process must be stopped 
within the hardcore ring. It is the case of a blocked 
process which happens to be in ring 0 because it called 
block in behalf of the user. In order to allow the stopping 
of such a process. subroutine stop always send a wakeup 
signal to the target process~ and whenever a process returns 
from subroutine block it gets momentarily unmasked against 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.00 PAGE 3 

stop interrupts. In this way, if a process is in ring 
0 in behalf of the user, it does get 'hit' by the stop 
interrupt which makes it call i_stop. 

One of the reasons why a process must not be stopped in 
the hardcore ring is that a stopped process can be restarted 
anytime in the future. The hardcore ring is pre-linked 
and shared by all processes. When a stopped process gets 
restarted in the future, it is possible that the hardcore 
ring might have been changed in the meantime (procedure 
recompiled, segments bound etc). If such as restarted 
process goes on executing on its old ring-0 stack, it 
might cause damage to the system. Therefore it is a system 
rule to never stop a process which has an unpredictable 
ring-0 stack history. 

As explained above, a process may be stopped only if it 
executes either outside of the hardcore ring, or in the 
hardcore-ring in the wait coordinator. 

When a process is restarted, it can be determined which 
one of the two possible stack histories it had, and a 
dummy stack history can be provided which would be sufficient 
to get the process out of the hardcore ring. A process' 
actual ring-0 stack must never be used for restart purposes 
and is therefore never saved. 




