
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.01 PAGE 1

Published: 10/01/68

Identification

stop_proc
Michae 1 J. Spier

Purpose

This section defines the overall strategy applied when
stopping a process. A ••stopped11 process does not., basically.,
differ from a "blocked" process; both processes have given
their processors away for an undetermined length of time.
However., the process that calls block does so knowing
that some other process will wake it up., whereas a stopped
process is more often than not 11 doomed'', on its way to
saving or destruction., and bas been~ to put itself
in the stopped state by another process (e.g • ., the universal
overseer process).

In stopping a process., we distinguish between two states
of execution for that process:

1 • The process is executing in behalf of the user.

2. The process is executing in behalf of the system.

A process must be stopped in a way such as to insure that
no damage will be inflicted on the system as a result
of that action.

piscussion

When a process is to be stopped., it is in either one of
the t""o above-mentioned states of execution. Without.,
at this point., going\ into a precise definition of those
states., the stopping policy is as follows:

1. A process that is executing in behalf of the user
is interrupted and made to call pxss$i_stop., which
puts it in a "stopped" state and gives the processor
away.

2. A process that Is executing in behalf
sys tern is a 11 owed to 11 run i tse 1 f out"
state; it is forced to stop itself as
it executes in behalf of the usero

of the
of that
soon as

By convention, a process is said to be executing in behalf
of the system whenever it executes in the hardcore ring.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BJ.4.01 PAGE ~ ..

Implementation

When process A wants to quit process 8 it calls

hcs_$stop_proc(B)

which, after validation of the call invokes pxss$stop(B)
which in turn sends a stop interrupt to process B.

Process B gets interrupted (provided that it executes
outside of ring 0), and the interrupt handler calls
pxss$i_stop to put the process in a stopped state and
give the processor away.

This strategy insures that a stopped process has always
a standard and reconstructable ring 0 stack history.

A stopped process can be restarted by calling

hcs_$start_proc(B)

which sets that process# wakeup switch to "on" and calls
for it pxss$start(B) to put it in a "ready" state.

