
,,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 1

I dent if icat ion·

The Scheduler

Pub 1 is hed : 1 0 I 0 1 I 68
(Supersedes: BJ.5.01, 03124/67;

BJ.5.01, 09113166)

Robert L. Rappaport, Michael J. Spier, A. Evans

Purpose

This section describes the multi-level scheduling algorithm
.which is used by the Traffic Controller in order to multiplex
the available processor time among ready processes.

Background

The reader is referred to the paper "An Experimenta 1 Time
Sharing System11 by f. J. Corbat~, M. Merwin-DagS}ett and
R. c. Daley which was presented at the 1962 Spr1ng Joint
Computer Conference and which describes the F. J. Corbat~
multi-level scheduling algorithm.

Introduction

The Traffic Controller maintains in the Active Process
Table (APT) a threaded list of all ready processes, named
the ready-list; it is a linear thread which goes through
the APT and which is broken into subthreads, or queues.
Typical of the ready-list (see BJ.1.02) is that it can
be accessed sequentially as a whole (when selecting the
next process to run), or partially by means of direct
access to a given.queue (when putting a process on the
ready list). The number of queues in the ready list is
fixed at system initialization time; queues are numbered
from 1 (highest-priority) to q (number of queues, lowest
priority) ~nd are accessed directly by their number.

Associated with every process in the system is a level
number 1 which corresponds to the ready list queue into
which this process' APT entry may currently be threaded.

Also associated with each process (and kept in the process'
D.efinition Se~ment, PDS) are two level numbers named
'lowest-level and 'highest-level' which delimit the
lowest-priority and the highest-priority level numbers
which the process can assume, respectively.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 2

The Traffic Controller maintains in the Traffic Controller
Data Block (TCDB) the following per-system i terns wbich
are used in conjunction with the scheduler (see BJ.1.01):

time_quantum

level_coefficient

A process' time allotment is a multiple of
this value; in addition, the time-quantum
corresponds to the span of uninterrupted
execution during which a process is immune
to pre-emption (excepting system pre-emption,
see B J • 5 • 02) •

This is an array of constants, set during
system initialization time, where every
entry corresponds to a level number and can
be accessed by using the level number as an
index into the array.

The value of level coefficient(i) is 2**i

The scheduling algorithm

The scheduling algorithm always decrements the process'
priority in the ready-list by one (increments the current
level number) making sure that the level number stays ~
within the boundaries of lowest- and highest-level. When
a process is engaged in dialogue with a human being, it
is said to be 'interacting'. In order to provide fast
system response to human request, an interacting process
indicates its state to the scheduler by calling it with
the argument 'interaction_switch' set to 'on'. The scheduler
assigns it its 'highest_priority' level number, thus making
it a prime candidate in the multi-process race for a processor.
However, the interaction is expected to be brief, and
the time-allotment associated with this level is small.
When the time-allotment runs out, the process is denoted
to the next-lowest level and its time-allotment is increased
correspondingly. This goes on until the process stabilizes
itself in its 'lowest-priority' level where it is assumed
to engage in non-interacting computations and where it
is given its largest time allotment. The algorithm for
computing a time allotment as a function of time-quantum
and level-number is:

time-allotment = t ime-quanturn ·k 2 .,...,.,. leve 1

Following is thP- implemented scheduler, in PL/I language;
symbols have been used above and are self-explanatory:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.01 PAGE 3

if level < highest_level then level=highest_level-1;

if interaction_switch then

1 eve 1 = 1 eve 1 + 1 ;

level=highest_level-1;

if level < lowest_level then level=lowest_level;

time_allotment=time_quantum*level_coefficient(level);

The scheduler is invoked as follows:

call scheduler(interaction_switch)

where interaction switch is set to 'on' whenever the
scheduler is called in behalf of an interacting process
via subroutine block, and 'off' when the scheduler is
called by the timer-runout interrupi handler.

