
,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 1

Identification

Pre-emption

Published: 10/01/68
(Supersedes: BJ.5.02, 03/24/67)

Robert L. Rappaport, Michael J. Spier

Purpose

As mentioned in section BJ.s.oo, a running process may
be interrupted and made to ~ive its processor to a ready
process which has a high-pr1ority level number. We name
this kind of interrupt a 'pre-emption' interrupt and say
that the running process has been pre-empted in behalf
of the higher-priority ready process.

This section describes the implementation of pre-emption
in Multics.

Introduction

The generalized rule for pre-emption is as follows:

When a process is put on top of the ready list, if
its level number is of higher-priority than the level
number of a currently-running process, and if that
process has run for at least as long as the high
priority process intends to run then the running
process is pre-empted.

The scheduler (see BJ.5.01) computes the time allotment
as a function of the process' current priority; the lesser
the priority, the larger the time-allotment. A running
process is pre-empted only if it has already run for at
least as long as the higher-priority process' time allotment.

This is in order to insure that a low-priority process
will never get into a situation where it spends most of
its process-time thrashing around between the ready-state
and pre-emption.

However, it is rather expensive to determine, whenever
some process is put on the ready-1 ist, what the priority
of all the currently-running processes is, and how much
is left of their time-allotment (one might have to stop
them all and look into their timer-registers in order
to .detemine that).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 2

For reasons of efficiency, a less generalized technique
has been adopted which permits pre-emption to be carried
out .3t discrete points of time only, but which can be
implemented without too much overhead. In Multics, the
timer-runout is a software-generated interrupt; the flipping
over of the timer register actually causes a hardware
fault which is intercepted by the Fault Interceptor (FIM).
The FIM sets the processor's timer runout interrupt cell
to "on'', thus converting a fault into an interrupt.

The Traffic Controller takes advantage of this mechanism.
Instead of loading a process' integral time-allotment
into the timer registers, it loads only a 'time-quantum'
into that register. A time-quantum is a system-constant,
and corresponds to the amount of time during which a process
is allowed to run without risking pre-emption (a typical
time-quantum could be 2 seconds). A process' time~allotment
is thus used up in a series of time-quanta, and the timer-runout
interrupt normally occurs when the last time-quantum of
this current time-allotment has been exhausted. The FIM
keeps count of the number of time-quanta that a process·
has used, and it also knows the number of time-quanta
that any other process intends to run. So whenever a
running process· gets a t i mer-runout fau 1 t because its,I
time-quantum has been used up, it 9oes into the FIM and
there looks to see whether or not 1t still has time-quanta
left. If not, i.t sends itself a timer~runout interrupt.
If it does have time left, it checks to see whether or
not the process on top of the ready-list has a higher-priority
level number. If it does, and if that process intends
to run for a number of time-quanta which is equal to or
less than the number of time-quanta this process has already
used up, then it pre-empts itself by sending itself a
pre-emption interrupt. Else it loads a fresh time-quantum
into its timer register and resumes its interrupted execution.

This scheme works fine for most processes. H~ever, certain
system processes cannot tolerate to wait for one whole
time-quantum to pass before pre-emption becomes effective.
Such system processes as the Device Manager Process or
the File System Device Manager or the Traffic Controller
System process, which all have the system .. s highest-priority
level number (level 1, which no user'process can ever
have), must be able to instantaneously pre-empt any other
running process. In order to emphasize this point, let
us assume that a Tape Drive Device Manager does not have
special powers of pre-emption. On aheavily-loaded system
it would then conceivably read a magnetic tape at the
speed of one record per time-quantum, which is rather
slow.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BJ.5.02 PAGE 3

On the other hand, all these level-1 processes are known
to perform very fast computations, and are guaranteed
to keep the processor for very short periods of time only.
Therefore, whenever a level-1 process is put qn the ready-list,
the lowest-priority non-level-1 process on the running-list
is automatically pre-empted, without regard to the number
of time-quanta that it has used up.

We name the level-1 pre-emption "system pre-emption" and
the non level-1 11 user pre-emption''.

System Pre-emption

The system pre-emption mechanism is invoked whenever a
process is put on the ready list. It goes through the
following steps (assume that process A is being put on
the ready 1 ist):

1. If process A"'s level number is unequal to 1, return.

2. Find the running process with the lowest-priority
(highest value) level number (let's name it
process B).

3. If process B"'s level number is equal to 1, return.

4. Call pre-empt (processor) where the argument is
the number of the processor on which process B is
currently executing.

For reasons of efficiency (processes are very frequently
put on the ready list), step 1 is executed in-line in
the Traffic Controller primitive which threads processes
into the ready list. Only when the ready process is known
to have level 1 is a call made to the pre-emption module.

~ Pre-emption

The user pre-emption machanism in invoked whenever a process
has exhausted a time-quantum and is executing in the Timer
runout Fault Handler. The fault handler goes through
the following steps:

1. Increments a count of 'time-quanta-used'. This
count is maintained in the process' PDS and indicates
the number of time-quanta that the process has
used up out of its current time-allotment.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.5.02 PAGE 4

2. Sees whether or not the process still has time left
out of its time-allotment. Whenever a time-quantum
is. loaded into the timer-register~ it is deducted from
the process 'time allotment (the last value loaded
into the timer-register might therefore be less than
a full time-quantum).

3. If no time available, it generates a timer-runout
interrupt for this process. Return.

Following is the pre-emption mechanism:

4. Compare this process' level number to the level number
of the top-most process on the ready list (a variable~
named "highest_ loaded", is maintained by the Traffic
Controller and contains the level-number of the top-most
ready process).

5. If this level number is of higher-priority than the
level number of this process, and if the time-allotment
for that leve 1 (found in array 11 leve l_coeff ic i ent"
in segment tc_data) is lower-than or equal-to this
process' time-quanta-used count then call pre-empt
(processor) where the arguments is the processor
number of~ process (self pre-emption).

6. Else, load a time-quantum into the timer register~
return.

\.

