
\

MUL TICS SYSTEM- PROGRA~1fviERS' f'tf.l.NUAL SECTION BJ.5.04 PAGE 1

Published: 03/23/67

Identification

LDBR Procedure
R. L. Rappaport

Purpose

Ldbr (Load Desc~iptdr Segment Base Register) can only
be executed in master mode. The ldbr procedure is a master
mode procedure used to isolate the ldbr instructions needed
in the Process Switching Module (see Sections BJ.5.00·BJ.5.02).

Discussion

An ldbr instruction cannot be executed in slave mode and
in the Process Switching Module there are three places
where this instruction must be executed. In each of these
places a call will be made to one of the three entry points
provided by the ldbr procedure. The reason for three
distinct entries is that each ldbr must be executed within
a certain context of instructions~ which is different
in each case. The three entry points are ldbr _1, ldbr_2,
and ldbr_3. They are all called with a standard calling
sequence. That is:

- ca 11 1 db r _ 1

2 - ca 1 1 1 db r _2

3 ca 11 1 db r _3

(ds);

(ds);

(ds);

where in each case cis is the value v1ith II'Jhich the descriptor
segment base register is to be loaded.

L.db r 1

Ldbr_1 is called in svvap_dbr (see Section BJ.5.01). The
context in which the ldbr instruction is executed in ldbr 1
is dictated by the nature of swap dbr. Svvap dbr is called
\\'hen one process (the caller) \rJants to give unconditional
control of a processor to another process (the target).
In order for the target process to be able to service
interrupts on this processor, certain informatio~ must
be a~cessible in the target~s address space. In particular~
the Processor Data Segment, of this processor, must be ·
a ~~~~e"~ ;n t~:- -c~~~'sc s~~c- ~n~ ~~o ~~ro~~~~ or~cocs ~t:-~':::jlll ... t!l. .:. 1 fll,;:, c. ~\.J: e ... ,:) -~J,_:::. G al-.._. Lf1'- L.c .. _ ::.~t... .::> , '-" c...:::'J

MULTICS SYSTEM-PROGRAt-1MERS,.. MANUAL SECTION BJ.5.04 PAGE 2

. ~ .

id must appear in this Processor Data Segment before any
interrupts cah be serviced. Theref6re the ldbr instruction
must be follm·Jed by three instructions which store these .
data it-ems into the target's address space and the three
instructions must be executed while the proc~ssor is inhibited
in order to prevent the servicing of interrupts during
this time. ·

The steps taken by ldbr_1 are tabulated below. It should
be noted that this routine does not do a stc:;mdard save.
This facilitates the creation of a stack for loading processe~.
Also note that the instructions before the ldbr are executed
in the address space of the caller and all references ·
to the descriptor segment or the Process Data Segment
refer to those of the caller process while after the ldbr,
such references refer to the segments of the target.

1. The caller stores the current value of.base
·register spinto its,::Proce_ss Data Segment. This enables
the caller to reset ·rts stack pointer the next time it
resumes cant ro 1.

2. Index r-egister 1 is loaded with the segment
number of the Processor Data Segment. This step implies
this segment has the same number in each process. This
register will be used as an index into the d~scriptor
segment in order to pick up and store the segment _descriptor
vvord for the Processor Data Segment.

3. The segment descriptor word of the Processor
Data Segment, for this processor, ;is loaded into the A~register:
This is done in order to pass along this 1.vord to the target.
The segment descriptor word is obtained from the caller's
descriptor segment.

4. (Inhibit on) The ldbr is executed.

5. (Inhibit on) The A-·regi-ster is stored into the
location in the target's.descriptor segment reserved for
it.

6. (Inhibit on) The combined AQ register is loaded
ltJith the process id of the target. This id is obtained
from the taraet's Process Data Seament.

~ ~

7. (Inhibit on) The AQ register is stored into
the Processor Data Segment.

MULTICS SYSTEM-PROGRAMMERS' ~~NUAL SECTION BJ.5.04 PAGE 3

8. Base register sp is lo~ded with the value stored
the .last t.ime the target was running.

9. The other base registers are restored with their
previous values •. The values were stored in the process
concealed stack at the .time of the call to ldbr_1.

10. The registers are restored with the va 1 ues they
had when the call to ldqr_1 was made by the target.

11. A return transfer is made to swap_dbr.

The actual machine code contained in ldbr 1 is listed
be low. <pds>, <prds>, <ds> are Process Data Segment,
Processor :Data Segment and descriptor segment respectively.

ldbr_1: stbsp <pds>l[last_sp]

1 dx1 <prds> I [segno]

lda <ds> I 0, 1

inhibit on

ldbr apl2, *
sta <ds> I 0, 1

ldaq <pds> I [proce~sid]

staq <prds> I [proqessid]

inhibit off

ldbsp <pds> I [last_sp]

ldb splo

1 reg spl8

rtcd . spl20

MULTICS SYSTEM-PROGRAMfvlERS' MANU.Ll.L SECTION BJ.5.04 PAGE 4

Ldbr 2

Ldbr_2 is called from ready-him (see Section BJ.5.02).
It is called using the Processor Stack (contained in the
Processor Data Segment). Ldbr_2 is simpler than ldbr_l
in that the value of sp need not be saved and restored
since both processes use the same stack and also in that
the target's process id is not stored into the Processor
Data Segment since the caller is still considered the
process in charge. The other steps are quite similar
to the ones in ldbr_1 and the code is presented below.

ldbr _2: ldx1 <prds> I [segno]

lda <ds> I 0, 1

inhibit on

ldbr ap 12, ·k

sta <ds> I 0, 1

inhibit off

ldb spiO

1 reg spl8

rtcd spf20

Ldb.Ll

Ldbr 3 is called in ready-him in order to return the processor
to the caller. At this point, all that needs to be done
is to switch descriptor segments, restore the bases and
return. The code is presented below.

ldbr_3 ldbr · ap 12, ~···

ldb sp/0

rtcd spl20

!vlUL TICS SYS TEfvi-PROGR.6.t1MERS' f''iANUAL SECT ION BJ. 5. 04 PAGE 5

\tJraoup

Since this is a master mode procedure, entry can only
be made at its initial entry. There a fevJ instructions
wi 11 be located vvh ich va 1 idate the ca 11. In part icu 1ar,
these instructions will verify that the address specified
by the argument in the call actually points to a descriptor
segment. If trouble is observed an error condition will
be noted and action will be taken similar to the action
taken at the time of a trouble fault. If no trouble is
encountered, a branch will be made to the appropriate
entry point.

