
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.05 PAGE 1

Published: 07/19/67

jdentification

The Ready List-Initial Implementation
t\. Evans

furpose

The ready list is a data base listing the processes which
are ready to run. The scheduler (see BJ.4.00) places
a process into the ready list in the place appropriate
for it. The dispatcher (see BJ.4.02) selects for running
that process which is at the top of the ready list. Quit
(see BJ.3.03) wi 11 remove a process from the ready list, ·
if it is called on behalf of a ready process. Finally,
swap_dbr (see BJ.S.01) actually removes from the head
of the ready list the process about to execute.

JmelementsatJon

There is no independent data base known as the "ready
11 st'' -- instead, it is implemented as two threads through
the Active Process Table (APT). The APT is discussed
in detail in Section BJ.1.01, which includes its complete
declaration. The part of the APT declaration relevant
to the present discussion is

del 1 tc_data$apt external,
• • • 2 ready_list_lock bit (36),
2 ready_list_head fixed,
2 ready_list_tail fixed,
•••
2 entry (200),

3 process_ld bit (36),
•••
3 ready_list_frwd fixed,
3 ready_list_bkwd fixed,
• • •

The first process on the ready list is the one whose index is in

tc_data$apt.ready_11st_head

That is, the process identification of the next process to
run is

tc_data$apt.entry(tc_data$apt.ready_list_head).process_id

:r'
MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BJ.4.05 PAGE 2

For any process with subscript 1~ the index of the next
process in the ready list is in

tc_data$apt.entry(i).ready_11st_frwd

For the last process in the ready list~ this entry is zero.
~n a similar way~ the entry

tc_data$apt.entry(i).ready_list_bkwd

points to the previous process in the ready list~ and

tc_data$apt.ready_list_tai1

points to the last process in the ready list. For the first
process in the ready list~ the backward pointer is zero.

As a special case~ an empty ready list is indicated by both
ready_list_head and ready_list_tail being zero.

tXImple

To put the process whose index is ! at the head of a non-empty
ready list, the scheduler executes code equivalent to the
following:

tc_data$apt.entry(l).ready_llst_fnwd a

tc_data$apt.ready list_head,
tc_data$apt.entry(i}.ready_list_bkwd • 0;
tc data$apt.entry(tc data$apt.ready_list head)

7ready list bkwd --i, -
tc_data$apt.ready_11st_head • 1,

Qiscyssion

It should be clear that both threads are needed~ even
though the example Just shown does not need them. For
example, the removal of a process from the ready list
in the quit module requires both pointers to permit patching
everything together properly.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BJ.4.05 PAGE 3

· Inter12$!k1ng 1tJs Rgdy .IJ..§1

The ready list is a system-wide data base. accessible
to all proc~sses and to all processors. Only chaos could
result if more than one process at a time were trying
to change its various pointers, so it is necessary to
adapt an interlocking strategy to prevent such an occurrence.
One of the items in the APT is ready_list_lock, a bit
~tring long enough to hold a process id. If this lock
is zero the ready list is available for use; otherwise
the lock is set to the p.rocess identification of the process
using the ready list. For a complete discussion of interlocks
in the process exchange, see BJ.6.

