
t-1ULT ICS S YS TE~1-PROGRAMtv1ERS" MANUAL

Identification

Interrupt Interceptor
L. J. Lambert

Purpose

SECTION BK.2.02 PAGE 1

Published: 01/31/67

The Interrupt Interceptor is the interface between the
hardware interrupt cells of the system controllers and
the interrupt handlers. Its primary functions are to
save the processor state~ mask the processor for further
interrupts of equal or lower priority and call the interrupt
handler for this interrupt. Upon return from the interrupt
handler~ it restores the processor state to continue the
interrupted procedure. The Interrupt Interceptor module
must execute privileged instructions and inhibit interrupts
during certain crucial operations. It therefore is a
machine language master mode procedure that is entered
only as the result of an interrupt.

Interruots

Interrupts within Multics are of two types. System interruots
are those which aris~ from I/0 devices and system clocks
and are not necessarily directed at the process currently
running on the interrupted processor. Process interruots
(time out~ pre-empt~ quit) are directed to the process
running on the prvcessor at the time of interrupt. Process
interrupts are triggered by a processor operating in the
Traffic Controller module. Interrupt priority assignments
are detailed in BC.1.04.

Stack Usaoe

For every interrupt that occurs the Interrupt Interceptor
requires a storage area for the processor state 1 temporary
storage for itself and for making calls to interrupt handlers.
This storage area is called an interrupt frame (BK.1 .03).
System interrupts cause interrupt frames to be established
in the Processor Stack. Process interrupts establish
interrupt frames in the Process Concealed Stack. Stack
usage is the only distinction made by the Interrupt Interceptor
between process and system interrupts.

Interrupt Interceptor Actions

The following actions are taken by the Interrupt Interceptor
\"Jhen a system or process interrupt is recognized.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.2 .02 PAGE 2

1. The processor state is stored in the current interrupt
frame in the appropriate stack. Pointers to the
current interrupt frame are maintained at the base
of the Processor Stack (BK.1 .03) and Process Concealed
Stack. The processor state is stored in three steps:

a. The processor control unit is stored (store
control unit instruction) using the scu pointer.

b. The arithmetic registers are stored (store
registers instruction) using the sreg pointer.

c. The address base registers are stored (store
bases instructions) using the stb pointer.

d. The ring number in which the processor was
executing at the time of interrupt is stored as
part of the scu data.

2. The base re~isters are loaded to establish the
standard paarings for the Interrupt Interceptor and
provide linkage.

3. The descriptor base register is loaded with the value
of the ring 0 descriptor segment.

4. A new interrupt frame is allocated in preparation for
the next interrupt. Since a processor may be interrupted
in the course of handling an earlier interrupt, care
is taken to prevent a possible overlapping of the new
interrupt frame and the interim stack in use at the
instant of the interrupt. A new interrupt frame is
allocated as follows:

a. The value of the stack pointer, sp, is obtained.
If the stack is not 11 empty11 , the sp-sb base
register pair stored in Step 1 (assumes sp-sb pair
is locked) points to the base location of the stack
frame in use at the instant of the interrupt and
spf18 ·points to the base location of the next
(intended stack frame (i.e. next sp). In this
case, a constant, k, is added to the value of the
next sp to obtain the base location of the new
interrupt frame. (Currently, k is equal to 32.)
If the stack is empty at the instant an interrupt
occurs, then the new interrupt frame is allocated
immediately folloiJIJing the current interrupt frame.
In this case, the base location of the new interrupt
frame is obtained by adding 24 (i.e. the length of
an interrupt frame) to the stb pointer at the base
of the stack.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BK.2.02 PAGE 3

b. A back pointer to the previous interrupt frame
is fabricated and stored into locations 22-23
of the ~ interrupt frame.

c. The stb, sreg, and scu pointers stored at the
base of the stack are adjusted to point to the
appropriate areas within the new interrupt frame.

5. A new interim stack is created immediately following
the new interrupt frame. The sp-sb address base
register pair is set to point to the base location
of the new interim stack.

6. The value of the next sp is determined and stored at
spl18 in the first stack frame of the new interim
stack. The amount of temporary storage required by
the Interrupt Interceptor is used in determining the
value to be stored at spl18.

7. The system controller interrupt mask register is
stored in t~e temporary storage of the first stack
frame of the new interim stack. This step is repeated
for all system controllers for which this processor is
designated control processor.

8. The system clock is read to establish the time of
interrupt recognition. This value is stored in the
temporary storage of the Interrupt Interceptor.

9. A mask t~at will inhibit recognition of interrupts of
equal or lower priority is set in the system controller
interrupt mask register. This step is repeated for
all system controllers for which this processor is
designated control processor.

10. A standard CALL is issued to the interrupt handler
module determined from the Interrupt Decode Table
(discussed below). This module may CALL other modules.
Until a RETURN is made to the Interrupt Interceptor,
all stack management is performed by the standard CALL,
SAVE, and RETURN sequence. When control returns to
the Interrupt Interceptor~ the sequence of steps
presented here continues.

11. The scu, sreg~ and stb pointers stored at the base of
the stack are restored from locations 22-23 of the
current interrupt frame to point to the base location
of the previous interrupt frame.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.2.02 PAGE 4

12. The system controller interrupt mask register is
restored to its state at the instant the interrupt
occurred. This step is repeated for all system
controllers for which this processor is designated
control processor.

13. The descriptor base register is loaded with the
value for the ring in which the processor was
executing at time of interrupt. This information
was stored with the scu data. ·

14. The processor is restored to its state at the
instant the interrupt occurred. This is done as
follows:

a. The arithmetic registers are restored (load
registers instruction) using the sreg pointer.

b. The address base registers are restored (load
bases iostruction) using the stb pointer.

c. The processor control unit is restored (restore
control unit instruction) using the scu pointer.
When the processor control unit is restored~
control returns to the point at which the interrupt
occurred.

All of the above steps are executed in master mode with
interrupts inhib:tt_g,Q. The CALL in step 9 is also performed
in inhibited mode on the chance that some interrupt handler
may require continuous inhibition. (It should be noted
that the standard CALL~ SAVE~ sequence for master mode
procedures does not allow inhibition through all of the
SAVE).

Decoding of interrupts and processor masking~ two of the
Interrupt Interceptor functions~ are discussed in greater
detail below. Figure 1 will prove helpful in following
the description.

Interrupt Decoding and Processor Masking

Interrupts signaled by a system controller force the execution
of an execute double instruction (xed) by the processor
desi~nated control processor for the system controller
send1ng the interrupt signal. The operand (called an
interrupt word pair) of the forced execute double instruction
is determined uniquely as a combination of the processor
base switches~ (18 toggle switches on the processor maintenance
panel)~ the processor port through which the interrupt

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.2.02 PAGE 5

signal was received co~?) and the interrupt cell number
(0-31) specified by the system controller. Each interrupt
word pair contains instructions of the form

scu
tra ·

abs 1 * - I

abs 2 * - I

abs_1 - is the absolute address of a pointer (its pair)
which points to the area in the current interrupt
frame used to stored the processor control unit.

abs_2- is the absolute address of a pointer (its pair)
which points to a unique entry of the Interrupt
Interceptor.

These word pairs and pointer, as well as the Interrupt
Decode Table described below, are constructed at initialization
time by the Interrupt Interceptor Initializer (BL.3.04).

The number of interrupt word pairs is equal to the number
of unique interrupt ?ignals that system controllers send
to control processors. Interrupt word pairs which should
never be set are all directed to a trouble entry of the
Interrupt Interceptor (entry_XXX).

Interrupt Decode Table

This table contains information needed to identify interrupts,
perform the masking function and notify the responsible
handler. For eac~ possible cause of an interrupt an entry
provides the following information.

1. Interrupt handler pointer- This is a pointer (its pair)
to an appropriate interrupt handler entry point for
this interrupt. ·

2. Active device number - This is a number (precision
18 bits) used to identify similar active devices
(e.g. GIOC1 = 1, GIOC2 = 2). See the individual
interrupt handlers for actual specification.

3. Interrupt number - This is a number (precision 18 bits)
used to define uniquely the interrupts from an active
device. See the individual interrupt handlers for
assignments.

4. Mask table pointer generator - This is an effective
address to pair (eap) instruction used to generate a
pointer to the mask table entry for this interrupt.
The mask table is located in the System Communication
Segment. Its format is described below.

MULTICS SYSTEM-PROGRAt'iMERS'" MANUAL SECTION BK.2.02 PAGE 6

Mask Table

The mask table because of its sensitivity to hardware
configuration chan~es is located in the System Communication
Segment. It conta1ns the following information on a per
interrupt basis.

1. The number of masks to be loaded when this interrupt
occurs. This is also equal to the number of system
controllers for which the interrupted processor is
control processor. ·

2. A pointer (its pair) which points to a "special
segment" (see BK.1.04). The effective address
generated by referencing this segment specifies
the system controller to be masked.

3. A 72 bit mask to be set in the system controller
specified by 2 above.

Items 2 and 3 repeated once for each system controller
for which the interrupted processor is control processor.

Interrupt Handler Call

The Interrupt Interceptor after decoding the interrupt
and masking the processor calls the interrupt handler
as follows.

call int_handler (active_device 1 int_number 1 time_ptr)

int_handler - interrupt handler entry point

active_device - described previously

int_number - described previously

time_ptr - a pointer to the system clock reading taken
when this interrupt was recognized.

--·

)

Processor Base
switches ...

interrupt word
pairs for systan
controller
connected to
processor port

A

B

c

H

Fault and Interrupt
Vector

Fault

L
. l_ . .

abs2,**
abs34,

)

its pointers

abs processor its
_s;ask_s~g-~ ____
scu _ptr

abs2

process data its
s~gmeDt _ _ ____
scu_ptr

abs3 <L:J.> its - - - - - - - - -- -
entry 1

4i> its
abs4 - - - - - - - - - -entry 2

.
•
•

ab~ - - 9!>_ - - - ! t~ -
entry_}2

Figure 1

)

<ii>

inhib on
I

~ entry 1 stb a,*
- sreg b,*

ldxl idc_intl,du
r- tra conunon

-- entry_2 stb a,*
sreg b,*
ldxl idc_int2,du
tra conunon

common:

interrupt decode table

ide intl:

ide int2:

·ide intn

~
c
r
-1
("")

Vl

Vl
-<
Vl
-1
fT1 ::s:
I
"'0 ;;o

2
~ ::s: ::s:
fT1
;;o
Vl

'
~
z
c
l>
r

Vl
fT1
("")

-1
0 z
OJ

" •
N
•
0
N

jg
G")
fT1

......,

