
MULTICS SYSTH1-PROGRM1MERS 1 MANUAL 

I dent i fi cat i on • 

The Fault Interceptor 
Chester Jones 

P u rpo sr:-... 

SECT I ON B K • 3 • 0 3 PAGE 1 

PUBLISHED: 9/13/66 

The Fault Interceptor ~lodule is the interface between the 
hardware fault mechanism and the procedures for handl in~ the 
various fault conrfitions. ·The Fault Interceptor ~.Aodule is 
responsible for savinP. the processor state when that processor 
faults, for calling the anpropriate procedure for handlin~ the 
fault, and for restoring the processor state after control 
returns from the fault handling procedure. The supervisor 
protection mechanism (Section RD.9) requires that crossing a wall 
in either direction be detected by a fault. Since it contains 
parts of the wall crossin_p; mechanism, the Fault Interceptor 
Module is accessible in every ring in the sense that It can be 
entered without first crossing a wall, and it is able to switch 
rings when necessary. The Fault Interceptor Module must execute 
privileged hardware instructions and inhibit interrupts during 
certain crucial operations. Therefore, the Fault Interceptor 
Module is a.hand-coded, master mode procedure that can be entered 
~as a result of a hard\.,.are fault condition. 

Summary of the Fault Interceptor Actions. 

When J Multics processor generates a fault, control passes 
(automatically, through the processor fault vector) to the Fault 
Interceptor Module which executes as part of the pr6cess that is 
running at the instant the fault occurs. While ex~cuting within 
the ring in which the fault occurs, the Fault Interceptor Module 
temporarily saves the processor state in the Process Concealed 
Stack (Section RJ.l.05) that· belongs to the runnin~ process and 
makes snace available for safe-storing the processor state should 
anothP.r fault occur. Then, the actions of the Fault Interceptor 
Module vary, depending on the probable cause of the fault. 

For user faults, the Fa~lt Interceptor Module perforMs the 
f o 1 1 0\.,. i n g s ten s : 

1. Copies the s~fe-storerl processor state from the Process 
Concealed Stack Into the pa~ed stack for the protection 
rln_p; in which the fault occurred. 

2. Uses the paged stack for that protection rin~ to call the 
procedure for handling the fault in that ring. 

3. Copies the safe-stored processor state from the paged 
stack into the Process Concealed Stack. 

4. Checks the validity of the safe-stored processor state. 



t~ULT tr.s svsTE~·1-PROGRAW1ERs' tAANUAL SECTION BK.3.03 PAGE 2 
... 

5. Restores the processor state to return control to the 
point ~t which the fault occurred. 

For system faults (except for mlssing-pa~e faults, connect 
faults, and timer runout faults), the Fault Interceptor Module 
performs the following steps: 

1. Switches control to the hard ·core ring. 

2. Switches from the Process Concealed Stack to the paged 
stack for the hard core ring. 

3. Calls the procedure for handling that fault. 

4. Switches back to the Process Concealed Stack from the 
hard core ring paged stack. 

5. Switches control back to the ring in which the fault 
occur red. 

6. Checks the validity of the safe-stored processor state. 

7. Restores the processor state to return control to the 
point at which the fault occurred. 

,-._ (For a description of the actions of the Fault Interceptor ~~odule 
In response to misslng-pa~e faults, tiMer runout faults, ~nd 
connect faults, see Sections RK.3.06. RK.3.07, and RK.3.08 
respectively.) 

Actions of the Fr~ul t I nterceotor t~orlul e. 

1. The processor state is stored in the current interrupt 
frame of the Process Concealed Stack. Pointers to the 
current Interrupt frame are maintained at the hase of the 
Process Concealed Stack. The processor state is stored 
in three steps: 

a. The processor control unit is stored (store 
unit instruction) using the scu pointer. 
instruction is executed in the processor 
vector.) 

control 
(This 
fault 

b. The arithmetic registers are stored (store registers 
Instruction) using the sreg pointer. 

c. The address base registers are stored (store bases 
instruction) using the stb pointer. 

2. The values for the 1 inkr~ge pointer and linkage base 
registers are determined and loarled into the lp-lb hase 
register p<'lir. (Since the Fault Interceptor ~-1orfule is 
not called, It must estr~hl ish its own 1 inka~e V<'llues.) 
Since the Fault Interceptor Module is a master mode 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 3 

3. 

l· .. 

procedure, the segment number of its 1 inkag~ section will 
always be one more than the segment number of the Fault 
Interceptor Module itself. 

A new interrupt frame is allocated in the Process 
Concealed Stack in preparation for the next fault (or 
internal interrupt). Since a processor may fault (or 
accept an internal Interrupt). in the course of handling 
an earlier fault (or internal Interrupt), care is taken 
to prevent a possible overlapping of the new interrupt 
frame and the interim stack in use at the instant of the 
fault. A new interrupt frame is allocated as follows: 

a. The value of the stack base register, sb, (stored tn 
Step 1) is examinerl. If the stack base re~ister, sh, 
does not contain the seP,ment number of the Process 
nata --Sep;ment, then the neVI Interrupt frame is 
allocated immediately following the current Interrupt 
frame. (It Is importr:mt to emphasize that sb 
indicates whether the new interrupt frame should he 
allocated relative to the stb pointer or relative to 
spl18.) In this case, the base location of the new 
interrupt frame is obtained by adding 24 (i.e. the 
lerr~th of an interrupt frame) to the stb pointer 
stored at the base of the Process Concealed Stack. 
If the stack base register contains the segment 
number of the Process Data Segment, then the sp-sb 
base register pair points rO the base location of the 
stack frame in use at the instant of the fault and 
spll~ points to the base location of the next 
(intended) stack frame (I.e. next sp). In this case, 
a constant, J:, Is added to the value of next sp to 
obtain the base location of the new interrupt frame. 
(Currently, k Is equal to 32.) 

b • A b a c k p o i n t e r to t he p rev i o u s i n t e r r up t f ram e t s 
fabricated and stored into locations 22-23 of the new 
Inter r ur t frame. 

c. The stb, sre~,- and scu pointers stored at the base of 
the Process Concealed Stack are adjusted to point to 
the appropriate areas within the new interrupt fra~e. 

4. For system faults Q.O..]_y, control is switched to the hard 
core rin~ of the running process. The basic mechanism 
for passin~ control from one protection rinp; to another 
is a "load descriptor base register" instruction whose 
address points to the value for the descriptor base 
register in the new ring. Control is switched to the 
hard core ring as follows: 

a. The value for the descriptor base register in the 
hard core ring of the running process is obtained 
from the Process Data Block (Section BJ.l.04). 



MULTI CS SY STH1-P ROG RA t-1~1E RS' MANUAL SECTION BK.3.03 PAGE 4 

b. A " 1 oa d rl e s c r i p t o r b a s e r e ~ i s t e r" 
executed. It is important to 
Instruct ion follm·Jinp; the "1 dbr" 
executed in the hard core ring. 

i n s t r uc t i on i s 
note · tho t the 
i n s t r uc t i on i s 

c. The paged .stack is switched to the hard core ring 
pa~ed stack. 

5. The safe-stored processor state is copied from the 
Process Concealed Stack Into the paged stack for the 
protection ring in which the processor is executing. 
(Note that the processor Is executing in the hard core 
ring for system faults; for user faults, the processor 
Is executing In the ring in which the fault occurred.) 

a. The values of the stack base register pair, sp-sb, 
are obtained. The stack pointer register, sp, points 
to the base location·of the stack frame In use and 
spll~ points to the base location of the next 
(intended) stack frame. 

b. The interrupt frame containing the processor state 
(Step 1) is copied. from the Process Concealed Stack 

. into the paged stack. (S i nee the Process Concealed 
Stack has been "pushed down," a missing-page fault 
during the attempt to copy the processor state is 
acceptable.) The base location of the Interrupt 
frame into \'Jhich the processor /state is copied is 
obtained by adding 32 to the value of next sp. 

c. An interim stack is created immediately followtn~ the 
interrupt frame. The first stack frame of the new 
interim stack is initialized. 

d. The stack base register pair, sp-sb, Is set to point 
to the base location of the newly createrl interim 
stack. 

6. The space required for temporarily saving the processor 
state is returned to the Process Concealed Stack (i.e. 
the Precess Concealed Stack t s "popped-up" one 1 evel.) 
The values for the stb, sreg, and scu pointers are 
derived from the back pointer stored in locations 22-23 
of the current interrupt frame. 

7. A standard CALL is issued to the appropriate module to 
handle the fault. This module may CALL other modules. 
Until a RETURN is made to the Fault Interceptor Module, 
all steps for handling the fault are taken by other 
procedures. vJhen control .returns to the Fault 
Interceptor Module, the sequence of steps presented here 
continues. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.03 PAGE 5 

j. 

8. For system faults .Q.Oll, control is returned to the ring 
in which the fault occurred. 

9. The safe-stored processor state is copied from the paged 
stack into the current interrupt frame of the Process 
Concealed Stack. 

10. The safe-stored processor state is checked to insure that 
the control unit information is valid. 

11. The processor state is restored to return control to the 
point at which· the fault occurred. 

Hardware lnterfnce. 

Each of the 32 faults included in the GE-645 fault repertoire has 
a corresponding pair of instructions, the fault vector o<=~ir, 
which the processor executes automatically when it generates the 
fault. The 32 fault vector pairs constitute the nrocessor fault 
vector, a 64-word hlock of core memory whose hase address is 
determined by switch settin~s on the processor maintenance panel. 
Each of the 32 fault vector pairs has a 5-hit fault code 
(00000-11111) which the processor uses to locate the f<=~ult vector 
pair for that fault. The 32 fault vector pairs are ordered 
within the ~rocessor fault vector by increasin~ fault codes. 
When the processor control unit detects a fault condition, it 
takes a "snapshot" of its internal status and aborts the entire 
processor. At the end of the abort cycle, t~ processor executes 
the fault vector pair that corresponds to th€ condition causing 
the fault. 

w·hen a Multics system is initialized (Section BL), each fault 
vector pair is set to store the processor control unit in a safe 
place (usually in the Process Concealed Stack) and transfer to 
the procedure for handline the corresponding fault (usually in 
the Fault Interceptor Module.) In general, the fault vector 
pairs have the form shown belm-J. In the following example, n..d.a. 
represents the segment number of the Process Data Segment 
(Section RJ.l.03), fim represents the segment number of the Fault 
Interceptor ~1odule, and entry represents the offset in the Fault 
Interceptor Module that corresponds to the entry point for the 
fault condition. 

tnhi~ 
scu 
t ra 

QD. 

=its(pds,4,*),* 
=its(fim,entry),* 

control unit into ~oncealPrl Stack 
transfer to entry point 

It is important to note that the addresses in the fault vector 
pairs are 18-bit nhsolutP core nrldresses which point, indirectly, 
throu~h 72-bit ITS-pointers, to se~ments that belen~ to thP 
running process. Roth the processor fault vector nnd the set of 
ITS-pointers are 11 \'li rerl" into corP memory and cannot he paged 
onto secondary storage. 


