Identification

Control Unit Validator
N. H. Liebling

Purpose

Control Unit Validator is called by the Fault Interceptor and the Interrupt Interceptor, whenever the user has had an opportunity to modify the Control Unit Data that is about to be restored.

After receiving a process fault and after calling signal, control may return to the FIM from the fault handing procedure. If and when this occurs, the FIM calls the Control Unit Validator to check the validity of the possibly changed control unit data. If the control unit data describes a legitimately obtainable processor state, the FIM then restores the processor state to the point at which the fault occurred.

The Interrupt Interceptor calls the Control Unit Validator when it is about to resume a process that has been saved.

Discussion

In order to validate the CU, the Control Unit Validator follows the following rules (see Fig. 1 for format of control unit):

1) In word 2 (Bits 18, 19, 27, 28 and 29), of the control unit, there must be one and on ly one of the P cycle bits on. If less than one or more than one of these bits were left on the processor may hang up upon executing an RCU.
2) The master/slave bit in word 2 (Bit 26), and the absolute mode bit (Bit 28) of word 4, must be off. If either were on it would indicate that a master mode (system) fault had occurred and was handled by a user. This cannot be the case.
3) In word 4 (Bits 31, 32 and 33), no more than one of the FT, FL or FD bits may be on. These bits specify the type of repeat instruction being executed, if any.
4) In word 2 (Bits 21 and 22) no more than one of the XDE and XDO bits may be on.
5) In word 2 (Bit 24) the temporary absolute mode (MASF) flag must be off. To insure against the possibility of returning to or using a master mode segment, the validator also checks the Segment Descriptor Words referenced by the PBR and TBR. If the segment referenced is in core the SDW will indicate whether or not it is master mode, and if the segment is not in core it cannot be master mode.
6) The Validator also checks the ring number that is to be returned to. This ring number must not be less than the ring number of the handler's ring.

The validator does not detect all possible errors in the control unit, however it does detect all errors that could conceivably hang up the processor or violate protection restrictions. The undetected errors will cause a fault upon execution of the instructions contained in the Control Unit Data.

Calling Sequence

```
call validator$control_unit (cu_ptr,error);
dcl cu_ptr pointer,
error fixed bin(17);
```

will check the validity of the Control Unit Data pointed to by cu_ptr. If the Control Unit Data is not valid, error wiTl be set to a one.

figure 1.

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BK.3.04 PAGE 4

Explanation of Abbreviations in SCU format chart

Word 1, bits 18-35:

```
    APPENDING UNIT STATUS
    OSTR Odd Seg. Tag Reg + Use Flag
    ITS ITS Tag
    ITB ITB Tag
    PEO Parity Error Operand
    ITR Indir. Tally f Tally
        Runout Indicator
DS PIW Desc. Seg. PTW Fetch
    SDW Seg. Desc. Word Fetch
    PTW Page Table Word Fetch
```

Word 2, bits 18-35:

CONTROL FRAME STATUS

PI -Instr. Fetch(1)Addr. Mod.(0)
PN -Indirect Addr-Forced R/N Mod.
XDE -Execute Double Even
XDO -Execute Double Odd
IC -Even(0)/Odd(1) Instr.
MASF - Temporary Absolute Mode
EA -Final Effective Addr.(1)
M/S -Master(1)/S lave(0)
PA -Initial Address Prep.
PZ -Indirect Addr. Prep. (RI or IR)
PT -Indirect Address Prep. (IT)
CT -Control Tag Register

Word 3, bits 21-25:
ILLEGAL PROCEDURE CODE
A - 645 privileged instruction (SDBR, LDBR, STAM, STAZ, CLAM, SCU, TSS, RCU, LACL)
B-Locked base, slave mode execution of EAPn, EABn, TSBn, LDCF, ADBN, LBRn

C -Op code ng defined
D -EA or pointer out of bounds
E - No access - access, write permit or class conventions

Word 3, bits 26-30:	FAULT CODE 00-shutdown 01 -MME 1 02-derai 1 03-timer runout 04-MME2 05-MME 3 06-connect 07-MME 4 10-F 1 11-635 compat. 12-illegal proc. 13-illegal desc. 14-parity 15-i 11 .mem.com. 16-F2 17-F 3	20-DFO 21 -DF 1 22-DF2 23-DF 3 24-DF4 25-DF 5 26-DF 6 27-DF7 30-635/645 31 -overflow 32-dvdcheck 33-execute 34-1ockup 35-op not complete 36-startup 37-trouble

Word 4, bits 18-28:
INDICATOR REGISTER
Z - Zero
N - Negative
C - Carry
0 O Oerflow
EO - Exponent overflow
EU Exponent underflow
OM - Overflow mask
T - Tally runout
PE - parity error
PM - parity mode
AM - absolute mode

Word 4, bits 30-33:

```
CONTROL FRAME STATUS
RF -Init. Repeated Instr.
FT -Repeat
FL -Repeat Link
FD -Repeat Double
```

