
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BK.3.07 PAGE 1

PUBLISHED: 9/13/66
Identification.

Timer Runout Fault Handler
Chester Jones

Purpose.

This section describes the actions of the Fault Interceptor
Module in response to the timer runout fault.

Discussion.

E a c h r, F - 6 4 5 p roc e s so r con t a i n s an t n t e r v a 1 t i me r, a 2 4- b t t
register which counts down whenever the rrocessor makes a memory
atcess. When the interval timer counts to zero, the processor
generates a timer runout f~ult and the interval timer continues
countin~ into the negative numhers. The desi~n of the Traffic
Controller (Section RJ) requires that the interval timer produce
an interrupt si~nal, rather than a fault, when it counts to zero.
This interrupt signal, the time-out interrupt, competes with
other interrupt signals on a priority basis for recognition by
the processor containing the interval timer. (See Section BJ.9,
Restart, for a discussion of how the time-out interrupt Is
handled.)

,_, The timer runout fault handler is the '\procedure in the Fault
Interceptor Module which transforms the timer runout fault into
the time-out interrupt signal. The timer runout fault handler is
shared by all processes running under the same version of Multics
and is executed entirely in master mode with interrupts
inhibited.

Actions of the Timer Runout Fault Handler.

When a Multics processor generates a timer runout fault, control
automFitically enters the timer runout fault handler v1hlch
executes on behalf of the process that is running at the instant
the fault occurs. The actions of the timer runout fault hanrller
are as follows:

1. Temporarily stores the processor state in the Process
Concealed Stack. (See Section RJ.l.05 for a description
of the Process Concealed Stack.)

2. Obtains the nrocessor index numher
Processor nata Rlock. (See Section
description of the Processor nata Block.)

(0-7) from the
RK.l.02 for a

3. Uses the processor index number to obtain the appropriate
pattern for setting the time-out interrupt cell for the
processor on which it is executing. This pattern is
found by using the processor index number as an index
into the time-out pattern array of the Processor

MUL TICS SYSTEM-P ROG RAMt.-1E RS' MANUAL SECTION BK.3.07 PAGE 2

)

Communication Table. (See Section RK.l.04 for a
description of the Processor Communication Table.)

4 • S e t s up an rf ex e cut e s a " s e t memo r y con t r o 1 1 e r i n t e r r u p t
cell" instruction whose adrlress points (Indirectly,
throu~h the . time-out pointer array) to the memory
controller throuP;h which the time-out interrupt si!;nal is
sent to that processor.

5. Restores the processor state and returns control to the
point at which the timer runout fault occurred.

Implementation ~xample.

The following machine code illustrates the initial implementation
of the timer runout fault handler. In the example, ~ stands
for the seement number of the Process Data Segment (Section
BJ.l.U3), fault_lnt represents the segment number of the fault
interceptor, pseg represents the segment number of the Processor
Data Segment (Section BK.l.Ol), proc_index is a location in the
Processor Oata Block (Section BK.l.02) that contains the 3-blt
processor index number, pet represents the segment number of the
Processor Communication Table (Section BK.l.04), time_pattern
stands for the base location of the time-out pattern array, and
tlme_ptr stands for the base location of the time-out pointer
array.

rem
rem

lnhih
scu
t r<"l

timer: staq
1 dq .
rem
rem
rem
1 da
sm ic·
ldaq
rcu
lnhlb

'\
The following two instructions appear
In the prpcessor fault vector.

on
=lts(pds,4,*),* control unit Into ~oncealr->rl Stack
=its(fault_int,tlmer),* P;O to timer runout

fault handler

=its(prls,2,*),* store A and Q temporarily
=its(pseg,proc_index),* ~et index number

The assumed format of proc_index is zero

=its(pct,time_pattern,ql),* get time-out pattern
=its(pct,time_ptr,qu*),* generate interrupt signal
=its(pds,l,*),* reload A and Q
=its(pds,4,*),* restore control unit
off

