
TO:
FROM:
SUBJECT:
DATE:

MSPM Dfstribution
M. A. Padlipsky
BL.10.03
07/10/68

The attached revision of BL.10.03 supersedes BL.10.03A
(02/28/68) as well as the previous version of BL.10.03
(04/24/67). AsicJe from minor changes, the main points
covered are the ~ncorporation of fs_init_3 into the main
body of the Init5.a1izer., and the documentation of the
11 uc'' data se$men~::: and the make_branches procedure. A 1 so ..
the ca 11 to 1ni t:ia 1 ize_pwt has been removed., in view of
the fact that thE::~ pwt has been removed.

MULTICS SYSTEM-Pf: OGRAMMERS" MANUAL SECTION BL. 10.03 PAGE 1

(Supersedes:
Published: 07/10/68
BL.10.03A, 02/28/685 BL.10.03, 04/24/67

Identification

File System Initialization (Part 3)
R. c. Daley

Purpose

This section provides the specification of the procedures
which perform thE:: third and fina 1 part of file system
initialization. These procedures run under the control
of the Multics i~itialization control program during the
third part of Multics initialization. The main purpose
of this part of file system initialization is to establish
branches in the ~ierarchy for segments already loaded
from the system ·tape and to establish the normal Multics
segment fault har1dling mechanism. After these initialization
procedures have been run, the procedures of the Multics
initialization cc:.ntrol program appear to the file system
as an active and loaded process.

I nt roduc t ion

When the Multics initialization control program first
enters the third part of file system initialization, the
system is in the following state. ·

1. All of the segments of the hardcore supervisor have been
loaded and t:: 11 externa 1 segment references have been
prel inked.

2. The normal 1:·ile system page fault handler (initialized
during part 2 of initialization) is operational and
is currentlv in use.

3. The interim se~ment fault handler (initialized during
part 2 of init1alization) is still in use but must be
rep laced.

File System Initialization

At the appropriate point durin~ the third part of system
initialization, the Multics in1tialization control program
takes the following steps to complete the initialization
of the file system.

MULTICS SYSTEM-PROGRAiii\MERS' MO.NUAL SECTION BL.10.03

Step 1

File system static st·::>rage constants are initialized by
means of the followin.~ calL

call initialize fs static;

PAGE 2

This procedure initializes the various file system constants
in static storage. Tl1e device identification, file length
and file pointer for the root directory are obtained from
the file system device configuration table.

Step 2

The hardcore segment table (HST) is initialized by means
of the following call.

ca 11 in it ia 1i ze_hs t;

This procedure creates entries in the HST for all of the
segments of the hardc~::>re supervisor as described in the
segment loading table. Since the unique identifiers of
these segments have not yet been specified, this item
is initialized to zero in each HST entry. Since no unique
identifiers are yet a-vailable, each entry in the hash
table is set with the vacant switch ON. The hash table
and unique identifiers wi 11 be filled in later once branches
in the hierarchy are ··~stabl ished for each segment in the
segment loading table.

Step 3

The known segment table (KST) is initialized by means
of a call to the segment control primitive initialize kst
(see BG.3.1). Once this has been done, the KST is moaified
to reserve all of the segment numbers currently assigned
to initializer segments in the segment loading table.
This is done to prevent segment control from assigning
these segment numbers to other segments to be used during
subsequent initialization. These segment numbers are
reserved by issuing the following call.

ca 11 reserve_i ni t_segs 1

This procedure expands the length of the KST entry table
to allow room to accomodate the highest segment number
assigned to any segment listed in the segment loading
table. The entries in the entry table corresponding to

·-

MULTICS SYSTEM-P:lOGRAMMERS' t-"ANUAL SECTION BL. 10.03

initializer segm~nts are threaded together in a circular
linked list. Th·~ pointer to the vacant entry list is

PAGE 3

then set to indicate that the vacant list is empty. Finally_
the highest assiqned segment number (highseg) is set to
the highest segm:mt number specified in the segment loading
table. As a result 1 segment control wi 11 start assigning
segment numbers at highseg + 1 and wi 11 only assign these
reserved segment numbers when specifically requested to
do so.

Step 4

An entry is plact:~d in the active segment table (AST) for
the root directory segment by means of the following call.

ca 11 upda te ... as t;

This procedure cteates an AST entry for the root directory
from the 11 root_b1·anch" information in file system static
storage and updates the AST hash table to point to the
new AST entry. The entry-hold count item in this AST
entry is set to "'1 11 to prevent the root directory from
being deacti vate(l during Mu 1 tics ope rat ion.

Note: During the next four steps_ missing-segment faults
will occur in manipulating directory segments. These
seoment faults will be passed to interim_2_segfault which
will immediately pass them on to the normal segment fault
handler. However·~ the interim segment fault handler will
continue to process segment faults for segments listed
in the segment loading table.

Step 5

Note: This step is omitted if the file system hierarchy
is known to be intact.

If the file system hierarchy must be restored~ the root
directory is initialized by means of the following call&

call initia1ize_root;

This procedure simply creates two directory branches in
the root directory by means of two successive calls to
the directory control primitive aphendb. One branch is
called 11 System_root" and defines t e subtree to be used
exclusively for segments of the Multics initialization
control pro9ram6 hardcore supervisor and the hierarchy
reconstruct1on process (see BH.3.01). The other branch
is called 11 Multics_root" and defines the subtree to be
used for all other segments.

MULTICS SYSTEM-PROGRAl-1MERS ~ Ml\NUAL SECTION BL. 10.03

Step 6

At this point., the temporary segments used only in the
initialization proces:.; must be removed., in order that
file hierarchy branch·•~s not be created for them in the
next step. This is a<:complished by the following call.

ca 11 de lete_temP,._segs J

Step 7

Branches in the file system hierarchy are established
for all segments list~~d in the segment loading table by
means of the fo llowi nq ca 11.

ca 11 i nit ia 1 ize_branches;

PAGE 4

This.procedure basica'lly loops through the SLT., extracting
pertinent information for each segment encountered and
calling make_branches to create a file system hierarchy
branch for each segment. Before the ca 11 to make branches.,
initialize branches p·~rforms a conversion on the liuser .
code'1 indicated in th-~~ SLT., in the following fashion:

usercode = uc$narnes(n);

with declarations

del n fixed(usez·code char(SO), uc$names (16) external
char(50J;

where n is the user co::>de from the S LT., and segment .Y£
is an assembled data base which is used to map user codes
input as integers from the header file into the 50 character
strings required by D.}.rectory Control; there is a maximum
of 16 possible codes., of which the following two are currently
available:

0 = a 11 processe'::; (*. '"'. *)
1 = i nit ia lizer :::.>rocess only (*.system.*)

The logic of make_branches is as follows: call appendbx
for the segment. If this call is successful the branch
has been created and make branches can continue (see below).
If the ca 11 is unsuccessful, there are two poss ib fe paths:
1) if no access was indicated, this implies that the segment~s
directory does not yet existJ therefore, call appendbx
for as many successively superior directories (indicated
in the path name) as necessary. Note that make_branches
currently creates directories with ring brackets 32 32 32,
as a default case; this is an interim measure., and it

MULTICS SYSTEM-PF:OGRAMMERS' MANUAL SECTION BL. 10.03 PAGE 5

is possible that at some future time directories should
be ring 0 only. 2) If a branch already existed on the
call to appendbx for the segment~ change the mode of the
branch so that it can be deleted, delete the branch, and
then create the branch based on the current information -
by another ca 11 ·to appendbx. Regardless of which path
was taken after the original call to appendbx for the
segment, before returning make_branches must check to
see if the branch is multiply-named; if so call chname
for the additional name(s).

Upon return from initialize_branches~ branches exist in
the hierarchy for each segment listed in the segment loading
table.

Step 8

The hardcore segment table (HST) is updated to include
the unique identifiers of the hardcore segments by means
of the following call.

call update_hst;

This procedure m~kes successive calls to the directory
control primitive status to obtain the unique identifiers
for each segment of the hardcore supervisor. As these
unique identifiers are added to the appropriate HST entries,
the hash table is updated. Upon return from this call
the HST is in its final form and ready for normal Multics
operation.

Step 9

The AST entries for segments listed in the segment loading
are linked toAST entries for their parent directory segments
by means of the following call.

call link_ast_parents;

This procedure takes the following steps for each segrnen~
1 isted in the se9ment loading table (SLT) which has a
corresponding AST entry.

, . A new AST entry for the segment is created by a ca., 1
to the directory control primitive estblseg, specifying
the correct segment number, followed by a call to the
segment control utility routine getastentry. There are
now two AST entries for the same segment~ the new entry
just created by getastentry and the old entry pointed
to from the SLT.

MULTI CS SYSTEM- PROGRA ~MERS ' Ml\NUA L SECTION BL. 1 0. 03 PAGE 6

2. The following itams are copied from the new AST entry
to the o 1 d AS T.

a. aste.id

b. aste.astparent

c. aste.xbranch

d. as te. amt i nde:l(

3. The AST hash table is updated to point to the old AST
entry and the new AST entry is discarded.

Step 10

At this point 1 a call is made to seg_fault to allow the
interim fault interce?tor to be replaced by the normal
Multics fault interce;:>tor. When this has been done., the
system initializer re~;umes file system initialization.

From this point on 1 sJJ. segment faults wi 11 be processed
using the standard seqment fault handler.

Step 11

The AST entry-hold counts for segments 1 is ted in the s·Lr
with normal status are still set to "1'' from part two
of file system initialization. Now that the normal segment
fault handler is completely operational., these AST entries
may be removed from the AST. To reset the entry-hold
counts for these AST entries a call is made to the following
initialization procedure.

call release_ast ... _entries;

This procedure reduces the AST entry-hold count by one
for each normal segment listed in the SLT and calls a
page control primitive checkentrv to determine if the
segment should be deactivated at this time.

Step 12

Note: This step is only taken when thEf file system hierarchy
must be re 1 oaded. · ·

If the file system hierarchy must be reloaded., many additional
segments must be present in the system hierarchy to accomplish
the reload (i.e. segments needed by the hierarchy reconstruction
process). These additional segments are loaded from the
Multics system tape by means of the following call.

call reload_system_hierarchy; ·

....... '

MULTICS SYSTEM-Pr.~oGRAMMERS' MANUAL SECT! ON BL. 10.03 PAGE 7

This procedure loads each segment found on Multics system
tape unt i 1 the 11 ~.md-or-ree 111 indication is reached. For
each segment found on the tape~ the necessary branches
are created in the hierarchy by calls to make_branches,
the segment is established in the KST by a ca 11 to estblseg,
the tape version of the segment is read into the specified
segment, the pages are forced out of core by a call to
uirlfJfree_core, and the KST entry is removed by a call
to makeunknown.

Step 13

Control is returned to the Multics initializer. KST entries
currently exist ·for all segments belonging to the initializer.
In effect, the initializer now appears to the file system
as an active and loaded process.

Post Initialization Windup

After the remainder of the hardcore supervisor has been
initialized and before giving up control to another process~
the initializer must again pass control to the file system
in it Ia 1 izer to return a 11 core which is current 1 y wired
down in its behalf. For this purpose the following call
is provided.

ca 11 fs_wi ndup;

For each initializer segment listed in the SLT with status
other than normal, the corresponding KST entry is located
and a call is made to the segment control utility searchast
to find the corre~sponding AST entry. Once the AST entry
is found the segment status in the SLT entry is tested
and one of the following actions is taken.

1. If the status is wired, a ca 11 is made to the page contra 1
primitive ~:freecore to release the wired-down pages
and the wired-down segment count is reduced by one.

2. If the status is loaded, the page-table-hold count
is reduced by one.

3. If the status is active, the AST entry-hold count is
reduced by one.

Once the above tests are made and the appropriate actions
taken, the AST entry interlock is removed by a call to
the page control primitive checkentry. Note that this
procedure must respect the interlock strategy since other
processes may be running at this time.

