
MULTICS SYSTEM-PROGRAMMERS~ MANUAL

Identification

Hardware Configuration Checker
A. Sasaki

Purpose

SECTION BL.3.05 PAGE 1

Published: 07/24/68

Hardware Configuration Checker is a subroutine which can
be called immediately after the initialization of the
MMCT (BK.4.04) in the system initialization environment
to check (so far as possible) that the hardware configuration
information in the MMCT agrees with the actual hardware
modules physically existing in the system and the actual
switch settings or plug boards used on those modules.

Calling Sequence

call check_configuration (status)J

del status fixed bin (36)J

Discussion

/*If status = 0 upon return
then check_configuration
believes that the MMCT
agrees with the actual
configuration. It is
possible, however, that
they disagree even if
check_configuration believes
that there Is no problem
because many switches and
plug boards are totally
program inaccessible. If
check_configuration detects
any problem then "status"
is set to a non-zero value.
As to the assignment of
values to the "status" see
Implementation*/.

Generally, it is impossible for a program to directly
sense the hardware switches on the GE645. Instead, indirect
but persuasive checks on the MMCT entries must be devised.
Another general principle of check_configuration is that
it does NOJ attempt to check absense of an,ything. Check_
configuration operates ln the simple EPL envi'ronment provided
by the bootstrap I, and II (see BL.O, BL.7.00) and the
following tests are performed in the order of the description.

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BL.3.05 PAGE 2

1 •

3.

4.

s.

6.

Tests on Memory Controllers for address ranges.

Tests on inter-module cable connections.

Tests on CPU"s for proper base address controller
assignment. and CPU tags. •

Tests on GIOC"s for proper base address. response. and
interrupt cell assignment.

Tests on Drum Controllers for proper base address,
ability to read data out of the drum, and interrupt
cell assignment.

Tests on System Clocks for proper address, reasonable
setting, counting. interrupt cell assignment, and
discrepancies between them.

All tests involve hardware-software interactions in their
clumsy and unent>ellished forms in a multi-processor hardware
environment and in the simple EPL environment, and thus
all tests are destined to be acrobatic if not tricky.
When execution of check_configuration begins, only the
boatload processor is guaranteed to be sane and all of
non-boatload processors have psychoses. Namely, at first
all registers on non-boatload processors contain random
numbers and the processors are in DIS state. Therefore
non-boatload processors are presumed to be insane and
as dangerous as psychotics with sharp cutleries in their
hands at first. Once they are wakened up from DIS state
by being interrupted or faulted they are quite ready to
start destroying everything and what is more. a number
of them can do that concurrently. Non-boatload processors
are not totally insane. however, since they may be brute
forced to execute an XED instruction in the area specified
by settings of the base address switches upon being interrupted
or faulted. See BK.1.04. In Multics system, the base
address switches are set in the same way on all processors
by convention. Therefore. the only sane processor, the
bootload processor. does know where those insane processors
are supposed to report temporarily sane when interrupted
and faulted, and he can put goodies there (accessible
as <fault_vector>) to let the insanes do a tiny bit of
sensible thing for the purpose of the tests, say painting
their own faces (loading its own dbr etc.).

Various tests on GIOC"s and Drum Controllers can be devised
based on the above philosophy by attempting to force the
GIOC or Drum Controller under test to cause a particular
interrupt of interest to check_configuration.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.3.05 PAGE 3

It is noted that any processor sets interrupt cells on
any Memory Controller# but any particular GIOC or Drum
Controller sets only interrupt cells on his mother Memory
Controller who in turn reports to his mother p..-ocessor
who is not necessarily the boatload processor and could
well be one of the psychotics.

For testing interrupt cell assignment (BC.1.04)# it is
necessary to know which interrupt cell was actually set
by the device under test. Unfortunately# however# interrupt
cells are not directly program accessible and an awkward
and indirect procedure is mandatory. Namely# the boatload
processor identifies the interrupt cell set on a Memory
Controller by letting the interrupted processor leave
a trace of different actions corresponding to each different
interrupt word pair in some area symbolically accessible
for the boatload processor.

The following are future elaborations foreseeable at this
writing# but not included in initial implementation:

1 •

2.

3.

Selective masking could be used to positively identify
the Memory Controller on which the interrupt cell
was set.

Checking for inconsistencies among MMCT entries
themselves before starting the tests listed previously
would be of great value.

With simple I/O control program designed Just for
the purpose of tests# it should be possible to test
full internal configuration of the GIOC under test#
and Drum Controllers could be tested for more elaborate
operation.

4. It should be possible to test the associative memory
switch on the CPU panel# either by comparing the
execution times for a trial access to some location
preceded and not preceded by a CAM instruction; or

s.

by a combination of a SAM instruction and a trial access
to some location. Since SAM stores the usage count
bits of the associative memory words it is possible to
positively identify the setting of the switch by
checking the bits before and after the trial access.

The timer register switch could be tested by executing
a STT instruction before and after carrying out trial
accesses to some location several times. If the switch
is set to memory cycle the timer register will be decremented
by the number of the trail accesses. If the switch is
set the other way the register will not be proportionally
decremented since the period of the 64Kc clock is about
15 microseconds.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.3o05 PAGE 4

Implementation

Check-configuration is implemented as an EPL procedure
that calls other EPL subroutines each of which in turn
ca 11 s one to severa 1 very sma 11 hand written EPLBSA uti 1 i ty
routines designed for execution of special instructions.
Check-configuration checks the return argument "error"
each time upon return from the subroutines and if it has
been set to a non-zero value he passes that value to his
return argument "status" and returns to the <initializer>.,
otherwise he continues the rest of the tests. Overall
implementation and details of the EPL and EPLBSA subroutines
are shown in the following.

check_configuration: procedure (status),

call

ca 11

test_memory_controller (error);
/*error = 10 + i means that expected

addresses do not exist on the i-th
memory controller where i is the
MMCT index.,

error = 19 means other troubles*/

test control assign and wiring (error);
- - 7*error = 20 + i means that a SMIC

or CIOC related to the i-th memory
controller has resulted in an
anomaly where i is the MMCT index.,

error = 29 means other troubles*/

call test_cpu (error);
/*error= 30 + i: a trouble on the

i-th cpu in the 1st part of
test-cpu;

error= 40 + i: a trouble on the
1-th cpu in the 2nd part of test
cpu., where i is the MMCT index.,

error = 39 or 49 means other
troubles*/

call test_gioc (error),
/*error= 50+ 1: a trouble on the

1-th GIOC where 1 is the MMCT
index.,

ca 11

error - 59 means other troubles*/

test drum controller (error);
- - /*error= 60 + 1: a trouble on the

1-th drum controller where 1 ls
the MMCT index.,

error = 69 means other troubles*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.3.05 PAGE 5

call test_system_clock (error)J
/*error a 71: the primary clock is improperly

addressed.
error • 72: a secondary clock is improperly

addressed.
error • 73z the primary clock has not been

set properly.
error = 74: a secondary clock has not been

set properly.
error • 75: the primar·y clock is not

running.
error = 76: a secondary clock is not

running.
error • 77: the primary clock has wrong

interrupt cell assignment.
error = 78: a secondary clock has wrong

interrupt cell assignment.
error = 79a the discrepancy between clocks

is greater than 1 sec.*/

test_memory_controller

The core memory existing in the system is divided into
independent modules each controlled by an independent
Memory Controller. Each Memory Controller is assigned
to a distinct address range. The address range assignment
specified in MMCT is checked by:

1. Setting the memory out of bound fault to transfer
the control check_configuration (see Fig. 1).

2. Attempting to read the highest and the lowest
addresses in each Memory Controller_ as specified
in MMCT.

The highest and the lowest addresses in a given address
range can be generated by the same technique as is used
in the <scas_inlt>. See BC.3.o4_ BK.4.02_ BL.2.o1_ BL.2.02.
If no fault occurs_ the claimed memory assignments do
exist somewhere although not necessarily in the Memory
Controller expected.

Preceding the tests on the Memory Controllers_ the <fault_vector>
is saved (see BK.1.04). A dummy segment is used (see Fig. 2)
and its DSW is manipulated to let it point to the highest
and the lowest addresses in the address ranges. Figure 1
shows the temporary <fault_vector.> and EPLBSA subroutines
used for the purpose of the trial readings. The ITS pairs
in the <fault-vector> and the <touch_snapshot> must be
initialized before the tests. It is noted that when control
is transferred to the <touch_snapshot>- the ABR's are
still loaded with quantities relevant to the <read_dummy_se0~
Therefore all external reference within the <touch_snapshot:>·.,
must be done via ITS pairs in order to avoid relying on the

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.3.05 PAGE 6

linkage mechanism. The <touch_snapshot> increments the
stored ICTC content by 1 when the stored CPU tag agrees
with the boatload CPU ta~ in the MMCT. It is test memory
controller~s responsibillty to check the validity of the
tag in the MMCTbefore starting the trial readings by
interrupting the boatload CPU calling set_cell (see Fig. 2).
Thus~ when the boatload CPU is faulted~ it will continue
the next step of the tests and if it is a non-boatload
CPU~ it will go back to the DIS state. In case any of
the CPU~s is Interrupted# the snapshot is stored and the
CPU will either go back to the DIS state or continue the
next step of the tests as in the case of the faults.

While any non-boatload processor Is executing in the
<fault_vector> or <touch_snapshot>- it runs concurrently with
the bootload processor. Therefore. the boatload processor
must wait for completion of other processor's action each
time after its trial read-out by looping in EPL.

test_control_assign_and_wiring

Check-configuration executes CIOC's and SMIC's on the
bootload processor for testing inter-module cable connections
and control processor assignment. The CIOC's are used
to connect-fault the aimed processor. The <fault_vector.>
in the Figure 1 is used for this test also. If both the
cable connection and control processor assignment are
correct, then either th~ bootload or ~ non-boatload processor
will leave the CPU snapshot at <fault_vector>l576. If
MMCT entries for the control processor assignment is in
error, however. a different processor than described as
the control processor in the MMCT will be faulted at best,
and even a non-CPU device could receive the operand word
of the CIOC. If an error in the cable connection and
control assignment happen to exist in a particular combination,
it .is possible that the seemingly correct CPU tag does
not mean correct configurationJ correct CPU tag could
mean wrong control assignment sng wrong cable connection.
This is the reason why tests by CIOC's as well as tests
by SMIC are needed. If a correct CPU picture is found
a short while after executing a CIOC, that means the processor
is physically connected to the specified part on the specified
Memory Controller, and the possibility for the double
error in the tests using SMIC's can be forgotten. Since~
if switches are set wrong~ the operand word of the CIOC
can be transmitted to any device, the operand word must
be fabricated so as~ to cause disastrous uncontrolled
run of any device. A possible bit pattern that can be
used as the CIOC operand is

"OOOOOOOOOOOOOOOOOOOOOOOOOOOD00101XXX"b

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.3.05 PAGE 7

On a processor, the bit pattern is immaterial, and on
a GIOC the bit pattern is interpreted as "connect-channel-9
for routine work should be activated in the normal mode".
Thus, by specifying the I PW ta 11 y as 11 0" b preceding the
test, it is possible to let the GIOC interrupt a particular
CPU. In ather words, if a fault has occurred that means
a CPU has been connected and if it is an interrupt that
means a GIOC has been connected. If nothing has occurred
after having executed a CIOC then something is wrong or
a Drum Controller has received the CIOC operand. On a
Drum Controller, the bit pattern is taken for a PCW specifying
"Emergency Disconnect" (see fig. 5). When execution of
check-configuration begins, all relevant segments have
been loaded and prelinked (see BL.7.00), and thus the
drum should NOT be in busy status and the "Emergency Disconnect"
will be disregarded. Since the CIOC instruction does
use the operand word, it is necessary to store the operand
at some location. It is a fundamental hypothesis to the
initialization procedure that at the end of Collection 1
the size of the whole system should ~OT overflow the first
memory module. Therefore, any core ocation in the second
and up core blocks can be used for storing the CIOC operand
at system writer~s own cost of generating absolute addresses
pointing to outside the first memory module, and the CIOC
operand can be stored at any location within the program
1f the CIOC is to be directed to the Memory Controller
for the first memory module.

test_cpu

In the first part of the tests on CPU~s, the content of
the dbr on the boatload processor is copied into dbr~s
on non-boatload processors, and a new version of the
<fault_vector> is used for this purpose. The interrupt
vectors are set to transfer control to a pair of ldbr
instructions and an indirect transfer using the same
technique as for processor initialization (see BL.11.03).
The second part of the tests on CPU~s consists of procedures
for fabricating still another version of temporary <fault_vector>,
and procedures for testing CPU~s. In the "realistic"
environment, the non-boatload processors are not insane
any more but they are still imbeciles since their address
base registers have not been initialized or paired yet.
Thus, they can access those locations pointed to by a
given ITS pair because of the proper content of their
dbr but such medium IQ actions as using the stack, or
linkage section are still beyond their ability. The
<fault-vector> used in the second part allows check_con
figuration to identify the interrupt cell set on a Memory
Con t ro 1 1 e r •

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.3.05 PAGE 8

First Part:

The new <fault_vector> used in the first part and other
relevant segments are shown in the flow chart, Figure 2.
The XXX----X in Figure 2 is the content of the dbr on
the bootload processor, and the <dummy_seg> is a dummy
segment used as the operand address of the SMIC's. The
address of the <dummy_seg> is properly modified preceding
execution of each SMIC for interrupting the particular
CPU to let it load its own dbr. At the end of the first
part, all of the non-boatload processors are in DIS state
with their dbr's containing the same content as the dbr
on the bootload processor who is ready to initiate the
second part.

Second Part:

Still another version of <fault_vector> is fabricated
at the beginning of the second part. The layout of the
new <fault_vector> and whole picture of the second part
is shown in Figure 3. Check_configuration sets a different
interrupt cell in each Memory Controller, one by one,
for the purpose of confirming that the new <fault_vector>
actually allows it to identify the cell set on a Memory
Controller.

The fourth word of the control unit information is always
non-zero. Thus, if 6*(1-1) + 4 th word of the <snapshots>
is found non-zero that means the i-th bit of some interrupt
cell has been set. Now check_configuration checks the
tag bits of the stored control information and identifies
which processor has been actually interrupted. At the end
of the second part, it is highly persuasive that base
address of the CPU's are properly set, controller assignment
is correct, CPU's are properly tagged, and no processor
is psychotic if not smart.. The environment established
by the second part will be used in the subsequent steps
of the check_configuration.

test_gioc

The basic tactic for tests on the GIOC's is to issue a
connect, setting the tally field of the IPWB to "O"b preceding
the test. See Figure 4. When a GIOC has been connected,
it checks that part of the IPWB before it starts any task
and if it finds that portion "O"b the status channel 0
returns an emergency status word and sets an interrupt.
(N.B •. : audible alarm is not triggered.) The spare words
of the mail box of the GIOC under test will be used for
storing both the emergency status word and the CIOC operand.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.3.05 PAGE 9

A pause in EPL is necessary to wait for completion of
storing the emergency status word and setting the interrupt
cell. Then check_configuration goes to the stored information
and checks it for expected emergency status word and
control unit information at expected locations. If the
check indicates no anomaly, it is highly persuasive that
the GIOC under test does exist actively responding with
proper base address and interrupt cell assignment in agreement
with the MMCT entries.

test_drum_controller

The basic tactic for testings on Drum Controllers is to
carry out CIOC's directed toward the particular Drum Controller
under test with the operand word fabricated for reading
out a 64 word page. The hardware design of Drum Controller
requires that the CIOC operand must be stored in a location
on the memory module where the mail box of the Drum Controller
is maintained. See figure 6. Using the 32nd word for
this purpose should not cause any trouble since check_
configuration is the only running process and all status
words should have been processed when execution of test_drum_
controller begins. The PCW stored at the 32nd word of
the mai 1 box has command bits for "start, fetch DCW pal r".
The 34th and 35th words are used for storing the DCW specifying
"Read out a sma 11 page and set interrupt cell'', and the
36th and 37th words are used for the DCW specifying "Normal
Disconnect". A pause by looping in EPL is necessary to
wait for comp.letion of the data transfer, disconnect and
the interrupt handling when the CIOC is executed. The
<fault_vector> is Figure 3 is used since checking the
interrupt cell assignment is one of the requirements.
If data has been read out to the core area reserved for
the trial reading, and if the expected control unit infonmation
is found at the expected location as well, then it is
highly persuasive that the Drum Controller under test
does exist actively responding with proper base address
and interrupt cell assignment in agreement with the MMCT
entries.

test_system_clock

The check_configuration reads all of the system clocks
sequentially one by one, and checks the readings against
"O''b, and "111----11"b then compares the readings. I"f
any of the readings of the secondary clocks disagree with
the primary clock by more than one second, check_configuratlon
picks up the largest of the readings and add 10 microseconds to

MUL TICS SYSTEM- PROGRAMMERS' tiANUA L SECTION BL.3.05 PAGE 10

it. Then it waits for one second by looping in EPL and
sets the alarm clock registers to that value one by one.
If the clock is counting properly# a wake up interrupt
will occur immediately. The <fault vector> in figure 3
is used and the interrupt cell set by the wake up interrupt
is positively identified for the purpose of checking the
interrupt cell assignment. It is necessary to read secondary
clocks by an EPLBSA subroutine using the segment <clock->.
The tests outlined here check all of the system clocks
for proper address, reasonable setting, counting, and
correct interrupt cell assignment for the wake up interrupt.
(The "trouble interrupt" cell assignment is not checkable
by program.)

d

MULTICS SYSTEM- PROGRAMMERS' ~NUAL SECTION BL.3.05 PAGE 11

call read_dummy_seg

next step

(fault_vector)

Fault Vector

-·· scu c
tra d,*

Int. Vector 1

scu c
rcu c

Int. Vector 8

scu c
rcu c

ITS

..
.
'

.
'

.
' '

'

' .
I

' ..

.
' . .

.
'
'

(read_dummy_seg)

save
Ida (dummy_seg) I [goof]
nop
nop
nop

(touch_snapshot)

if boatload cpu then

:..,.. ICTC + 1 =) ICTC

.. and transfer to

<read_dummy_seg) I ICTC

by 1 -+ PI flag, and rcu

else

. .

dis

fig. 1. <fault_vector> for
tests on Memory Controllers.

wirings. and Control Assignment •

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BL.3.05 PAGE 12

call dbr (pattern)

set (fault_vector}

build cpu list from

MMCT.compute middle

address

tape up a cpu

manipulate DSW for

the dummy segment

execute SMIC by

call·set cell (bit_)

wait in EPL

chick snap_shot

d

b

r

(dbr_}

save

sdbr apl4*

return
' ______ _ ---,

. .
! (MMCT)

. . . .

11 _ ___.

. .
' . .

aos *+2
tra *-2

DSW : '.
1-------f', '•

' '"-fake address

........_ -

"'
~ (dummy seg}

goof: oct 0

set cell)
save
Ida ap 12, *
SMIC (dummy_seg)l[goof]
return

.
•
'

' '

/
- ------~_.,. I

set error
return

I
I

I
I

1,. \ ' . ,.
(touch_snapshot~

~y-tes~ go to part 2
see Fig. 1

Fig. 2. CPU test part 1

,,
(fault vector)

Fault Vector
Scu c
tra g.*

Int. Vector 1

tra d

Int. Vector 8

tra d

ldbr e
tra f,*

XXX •• • • • • •. XX

d

SECTION BL.3.05 PAGE 13

et <fault_vector >

build table
MC. vs. int. bit,
address for SMIC

",\ <nnnct >

and j- ,
,_......__-+----- ,!,_ ___ __..

take up a MC.

manipulate DSW for
<dunnny_seg > ,---

~--------~----------

< dseg>

DSW

<dunnny seg >

'lgoot:oct 0 ,,
,

-"take address

" ,
f(

.::<~s:,::e:.:t:....::c:.::e:;.;:l;.;:l;.....c:~_,,/

Fig. 3: CPU Test Part 2.

<fault vector>

Fault Vector

scu c
tra g. *

Int. Vector 1
scu e+2i. ~
-r~u e+2i. '<r

Int. Vector 8

scu e+2i. *
rcu e+2i. *

MULTICS SYSTEM-PROGRAMMERS# MANUAL

CORE

.
•

/
/ /

/
/ /

/ /

/ /
/ /

/ /
/

...... --.....

' '

-

'
' \

--

....... ...

SEU'I ON BL :3. 65 -- PAGE 14
/

I
CPU /

: "'- ly ;';ru I
• ~ort se lee t

0 on COW.

I
I

I

I

I

I
I

1 GIOC

--

conn.
chn. j

status
chn. k

'\

\

j

I
J

oneoy- C5"rm- ---

• . .

1------"

/
I

I
\,
~=============k

• .. e.g. line printer

Fig. 4: GIOC Connect and Status Report

~·

,
'

t

MULTICS SYSTEM-PROGRAMMERS' MA.NUAL SECTION BL.3.05 PAGE 15

CORE

y

' \.
'

...... -

/

....._

/

/
/

PCW

-

'

\
\

-

i th
Port

' \

' \
I

' ' \
\

\
\

-----..--.... -·- -
CPU

0-- CIOC PCW

0-· / I
I

I
I

Port Select

\
\.

\
\

Drum Controller

' !2048

\ ' \ ' -,-- """'-
\ ..._
\
\
\
\

' \
\

\
\

'

64 or 1024 wds •.

- Status?

Fig. 5 Drum Controller Connect and Status Report

do?

' I
I

I

•,
J •

MUL TICS SYSTEM- PROGRAMMERS' MANUAL SECTION BL.3.05 PAGE 16

mail box base --
. .
'
;

abnormal status b ... oxes
' . 32 . .
' .
<
<
< ~

current status box
J DCW

.
' .
' ' .
•

DCW pa irs_ .
I

~
•
~
I

•
2048

I

• • •
<I

' ·L

• • • I • • .
• • •
• • •
" •
t
e
• • .
b

•

Fig. 6: Drum Controller Mail Box

