
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.01 PAGE 1

Published: 05/1/67

Identification

Initializer Control Program- Initial version
A. Bensoussan

Purpose

The initializer control program is one of the Multics
initializer's components. It cohstitutes the logical
skeleton of the Multics initializer, since it consists
of a sequence of calls to the appropriate initialization
routine, at the appropriate time.

This section describes the initializer control program
that will be used in Phase I and it will be superseded
by a complete description.

Phase I restrictions

1. The Multics initializer does not interact with the
operator.

2. There is only one possible version of the hardware
configuration and one possible version of the
supervisor; therefore, the segment loader does not
have to select the appropriate loadlist in a loadlist
collection.

3. The system configuration table is made up of 3 segments:

a.
b.
c.

Major configuration table (MCT)
File system configuration table (FSCT)
Device configuration table (OCT)

In the MST, the MCT and the FSCT are recorded in
the final binary form; thus they do not need to be
translated from symbolic·form to binary form. On
the other hand, the OCT is recorded in symbolic
form and has to be translated in binary form.

In Phase I, the system configuration table generator
is not implemented. The OCT is manufactured from
the symbolic segments by the io_initializer.

~1ULTIC~ SYSTU1-PROGRAfv1~1ERS' f''tAr·JUf\L S[CTION BL.5.01 PAGE 2

4. Since there is only one process, the process exchange
does not need to be initialized. As a consequence
"block' 1 and "wakeup'' will never be enabled.

5. The protection mechanism is not implemented in Phase
I. The notion of the ring still exists but a ring
merely represents a set of segments, without any
protection, that is, all rings have the same number.
This conception of the particular ring structure
used in phase I is preferable to the one which would
consist of having only one ring, because it allows
us, in the documentation, to refer to the "hardcore
supervisor" segments and 11 outside hardcore supervisor"
segments.

6. The signal mechanism is not implemented in Phase I.
The fault interceptor calls directly the appropriate
fault handler instead of calling the signal routine.

7. In the full Multics, when a process is created, the
linker and its utility routines to be used by the
process have to be pre-linked by the process creation
module.

In Phase I, these segments are loaded from the Multics
system tape and pre-linked as if they were part of the
hardcore supervisor.

Discussion

The initializer control program is loaded and called by
the bootstrap initializer. The calling sequence is:

call <initializer_control> I [initializer_control]

The environment available to it when it is called is described
in detail in BL.5.00.

The initializer control program contains 4 parts (all of
them in same se~ment) corresponding to the 4 logical parts
of the Multics 1nitializer (BL.5.00).

~1ULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.01 PAGE 3

This section contains the following paragraphs:

a. Initializer control program
b. Description of part 1
c. Description of part 2
d. Description of part 3
e. Description of part 4

In (a), the complete list of all calls issued from the
initializer control program is given; (b) (c) (d) and
(e) provide a short description of what each call is supposed
to perform in each part, and indicate the MSPM sections
where a complete description can be found.

Initializer control program

Part 1:

Call segment_loader 1 •

2 0

3.

f'·k 1 oad Part 1
configuration
update core map
1 oad Part 1

Ca 11 corc_manage r $ update_core_map /"k
Call segment_loader 1-1~

4.

50
6.

Call pre_linker $ combine_set

Ca 11 i o in it 1

supervisor
I* prelink Part 1

supervisor
I* initialize GIM
I''~ te 11 tape reader

~~I

-'-I "

-'-I "

·'-I "

Call tape reader$ use_gim
GIM ready *I

7.

8.

9.

, 0 0

Call interrupt_init $one

Call interrupt_init $two

Ca 11 fs in i t_1

Call core_manager $ free_core

Part 2:

1.

2.

3.

4.

5.

Call segment_loader

Call pre_linker $ combine_set

Call fs_init_2

Call fault_init $one

Call interim_fi $ use_mode_2

I* initialize interrupt
interceptor *I

r-·~ in it i a 1 i ze
interrupt vector *I

I* secondary storage
devices -'-I "

I* get core for
Part 2

1·k load Part 2
supervisor

I* prelink Part 2
supervisor

I* initialize page
fault

I* initialize fault
interceptor

I* switch interim fi
to mode 2 -

-'-I "

,,
"

r

MUL TICS SYSTEM-PROGRAMMERS' rvtl\NUAL

Part 3:

1. Call segment_loader

2. Call segment_loader

3. Call pre_linker $ combine_set

4. Call fs_init_3

5. Call interim_fi $ use_mode_3

Part 4:

1. Call fs_init 4

2. Call pre_linker $ redirect

3. Ca 11 io in it 2
4. Call fault_init $ two

5. Call tc init

6. Call fs-windup

7. Call multics $ system_control

8. Call shut_down

Description of Part 1

The main purposes of Part 1 are to:

SECTION BL.5.01

f'·k 1 oad Part 3
supervisor

1·:r load Part 2
configuration

I* prelink Part 3
supervisor

I* initialize segment
fault

I* switch interim fi
to mode 3 -

I* reload file system

·'-I "

·'-I "

·'-I "

hierarchy *I
I* references out of

hardcore *I
/*initialize TCIM *I
I* initialize fault

vector *I
I* initialize traffic

controller *I
I* delete initialization

segments ·kl
I* enter multics system

control *I
I* shut down the system *I

a. Initialize the first part of the system configuration table.

b. Load the first part of wired-down ha rdcore supervisor and
initialization segments needed in Part 1.

c. Combine linkage sections and perform the pre-linkage of
hardcore supervisor segments that have been loaded. 1

d. Initialize the GIOC interface module (GIM) and its da;ta
bases.

e. Initialize all secondary storage devices used by the
file system.

,.... MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL .5. 01 PAGE 5

The following calls are issued from the initializer control
program:

1. Call segment_loader (BL.6.01)

When invoked at this point the segment loader reads the
Part 1 configuration loadlist (collection 2). This
loadlist contains the names of all the segments that
have to be read from the Part 1 configuration 1 ibrary
(co 11 ec t ion 3).

Then, the se~ment loader reads the segments mentioned I
in the loadhst from collection 3. '

In Phase I, the configuration segments read in Part 1
are:

a. The major configuration table (MCT) itself in
binary form

b. The file system configuration table (FSCT) itself1
in binary form

c. The symbolic configuration segments containing the
necessary information to build the portion of the,
OCT needed in Part 1. ,These· segments in .symbolic
form wi 11 be translated to binary form and stored
in the OCT, by a tall to. io_init_1.

2. Call core_manager $ update_core~map (BL.6.03)

Up to this point, the core manage. 'r was assuming that a
certain amount of core was available immediately
following the base address of the Gioc·used in the
bootload. Now it can update its core map using the
major configuration table (MCT) that has been read
by the segment loader.

3. Call segment loader (BL.6.01)
. \ : I '

When invoked at this point, the segment loader reads
the Part 1 supervisor loadlist (collection 4). This
loadlist contains the names of all supervisor and
initialization segments that have to be loaded from
the Part 1 supervisor library (collection 5).

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.5.01 PAGE 6

Then the segment loader reads the· segments mentioned
in the loadlist from collection 5. Among them are
the portion of the wired-down hardcore supervisor
segments needed in Part 1.

4. Call pre_linker $ combine_set (BL.7.02)

For all the hardcore supervisor segments that have been
loaded and that have a combinable linkage section, the
linkage section information is combined in the appropriate
special linkage segment (wired_hcs.link, loaded_hcs.link·
or active_hcs.link).

Then, for all external references made in any hardcore
· supervl sor segment that i.s in core, to any segment that
is also in core, the link pairs in the hardcore supervisor
linkage sections are cha~ged from faults to correct
machine addresses.

5. Call io_init_1 (BL.8)

The GIOC interface module (GIM) and its data bases are
initialized in such a way that the GIM can accept calls
from the file system initializer for readin~ and writing
on discs, and also from the Multlcs initial1zer~s tape
reader for reading the MST.

The actions taken by io_init_1 are the following:

a. Initialize device configuration table (OCT).

The OCT table is one segment of the system configuration
table. It is a very large se~ment; ·therefore, only
the portion needed in Part 1 1s built by io init 1;
the rest of it will be built in io init 2. -The
necessary segments to manufacture the fTrst portion
of the OCT have been loaded with Part 1 configuration
segments; they are in symbolic form; they are
translated by io init 1 into binary form and stored
in the OCT. - - .

i
b. Initialize GIM and its data bases. The data bases

are the logical channel table (LCT), the channel
assignment table (CAT), the channel status table
(CST) and the wired down storage area.

' r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.S.01 PAGE 7

Upon return from this call~ the GIM· is ready to accept
I/O requests from the Muttics initializer for tape and
discs.

6. Call tape_reader $ use_gim (BL.6.02)

Before the GIM was initialized~ the tape reader was
creating by itself 'the connect control words for
reading the tape. Now it has to ·request connect
operations from the GIM. ihis call to the tape
reader is merely to inform it that the GIM is
initialh:ed and has to be used.

7. Call interrupt_init $one (BL.9.02')

The interrupt interceptor and its data bases are
in it ia 1 i zed:

'

a. The value lp-lb for the interrupt interceptor is
pbtained and stored 11 inside"· the. interrupt
'interceptor procedure. . .. · ·

b. Pointers to various locatio.ns· of the processor
and concealed stacks are· bu 11 t and stored 11 inside1"

the interrupt interceptor procedure. •

c. The processor stack 1~. initialized, that is, the,
, 4. po 1 nte rs scu_pt r, s tp_pt r, s t reg_pt r and
• next_spyt r ana set. · ·

d. · The mask table in the system communication segment~
and the interrupt dec;:oqe t,ble in the interrupt
interceptor itself are lnitialized.

I ' . .

8. Call interrupt_init ~ two (BL.9;,02)

The interrupt vector is fn:itialized to its final forn1.

From this point on, tape disc·and drum I/O can take 1.

place using the Multics· Interrupt handling mechanism .
except that the modules 11 Wakeup11 and "block" in the 1

process exchange are disabled (they execute a return)
until the coexistence of at least 2 processes~ situation
that wi 11 occur during the traffic controller initialization,
in Part 4. ·

For Phase I; traffic controller initialization is not
needed; therefore, wakeup and block will never be enabled.

,...
'

,.
!.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.01

9. Call fs_init_1 (BL.10.02)

The major functions performed by this call to the
file system initializer are:

a. Ini~ialize the hierarchy by preparing free
storage map in each secondary storage device
and creating an empty root directory.

This action is taken only if the file system
hierarchy has been destroyed or must be
re 1 oaded.

PAGE 8

b. Define the areas of storage to be used by the
version of Multics currently being initialized.

c. Initialize the device disposition table (DDT).

d. Initialize the system segment tables (SST):
~he active segment table (AST)# the descriptor
segment table (DST) and the process segment
table (PST) are initialized to appear empty.

e.

f.

g.

Initialize ~he core map in such a way that
each block of core available to this version
of Multics appears currently unassigned.

Initialize the wired-down process waiting table
(PWT) to appear empty~

Initialize the I/O queues common to all DIM's;
then initialize a DIM for each secondary storage
device available to the file system.

10. Call core_manager $ free_core (BL.6.03)

Part 2 of the Multics initializer is the most
critical part as far as the core requirement is
concerned.

For this reason# at the end of part 1, all the
segments which are no longer needed are deleted
and the core map maintained by the core manager
is updated.

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL. 5. 01 PAGE 9

The information indicating that a segment can be
deleted at this point is found in the corresponding
SLT entry.

The segments deleted now are:

Bootstrap 1
- Bootstrap 2
- io ihit 1
- fs:in!t:1 and all the initialization segments

that 1t calls, and their associated linkage
sections.

Description of Part 2

The main purposes of Part 2 are to:

a. Load the rest of the wired-down supervisor segments
and the portion of the Multics initializer segments
needed in Part 2.

b. Combine linkage sections an~ perform the prelinkage
of hardcore supervisor segments that have been loaded.

c. Make Multics missing page fault handling available.

d. Make interim2 missing segment fault handling available.

After Part 2 is completed, th~ remaining segments of the ,
hardcore supervisor can be loaded in virtual memory, being!
eventually moved into secondary storage by the usual Multics
paging algorithm. '

'

The following calls are issued from the initializer control
program:

1. Call segment_loader (BL.6.01)

When invoked at this point, the segment loader reads
the Part 2 supervisor loadlist (collection 6). This
loadlist contains the names of all supervisor and
initialization se~ments that have to be loaded from
the Part 2 superv1sor library (collection 7).

- ".,.,. -- -,;'. . ~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.01 PAGE 10

Then the segment loader reads the segments mentioned
in the loadl ist from collection 7. Among them are
the rest of the wired-down hardcore supervisor
segments.

At this point, all the wired-down segments are in
core.

2. Call pre_linker $ combine_set (BL.7.02)

For all the hardcore supervisor segments that have
been loaded in Part 2 and that have a 11 must-be-combined11

linkage section, the linkage section information is
combined in the appropriate special linkage segment
(wired_hcs. link, loaded_hcs. link or active_hcs. link).

Then, for all external references made in any hardcore
supervisor segment that is in core, to any segment that
is also in core, the link pairs in the hardcore supervisor
linkage sections are changed from faults to correct
machine addresses.

3. Call fs_init_2 (BL.10.03)

The following actions are taken by the file system
initializer:

a. Set the descriptor words for the segments
'' hardcore ds'' and ''current ds 11 to point to
the Multics initializer's descriptor segment.

b. Create an entry for the hardcore descriptor
segment in the descriptor segment table (DST).

c. Create an entry for the Multics initializer
in the process segment table (PST) and link
it to the DST entry.

d. Create an entry in the active segment table (AST)
for each segment of the SLT (except for wired-down
hardcore supervisor segments and for the descriptor
segment) and place, in the SLT entry, a pointer to
the corresponding AST entry.

MUL TICS S"VSTEM~ PROGRAMMERS' MANUAL SECTION BL.S .01 PAGE 11

e. Set every pa~e table word in such a way that:
for an exist1ng pag~, it contains a "written-bit''
ON, for a non-existing page, it contains a pointer
to AST entry of the segment to which the page
belongs (or a pointer to th.e DST entry if the
segment is the descriptor segm.ent).

f. For each segment which is neither ·a "wired-down"
nor a "loaded'' hardcore supervisor segment, attach
to the corresponding AST a process trailer showing
that the segment is used by the Multics initializer.

g. Update the core map.

Upon return from this call, the Multics missing page
fault handler and an interim segment fault handler
are operable.

The name of this interim handler is •• interim2_segfault".
Missing segment faults cannot be handled by the Multics
handler because none of the existing segments has a
branch in the hierarchy. Branches will be established
in Part 3, where the Multics missing segment handler
will be made available to the Multics Initializer.

Interim1 segfault, when ihvoked, used to build a
segment descriptor word and a page table for the
missing segment, taking the needed information in
the SLT and requesting mernory from the core manager.

Interim2 segfault still performs these 2 functions,
of course, but it does it in such a way that the
page fault handler made available in Part 2 can
run properly during Part 3, while the Multics missing
segment is not available:

a. If no pointer to the AST is found in the SLT, an
AST entry is created and a pointer to the AST
entry is placed in the ALT entry.

b. A call is made to page control to provide a
page table. Each page table word contains a
pointer to the AST, which allows page fault
to work.

MULTIC; SYSTO~-PROGRAMfv1ERS" MANUAL SECTION BL.5 .01 PAGE 12

4.

c. A descriptor segment word is manufactured.

Furthermore., in Part 3 during a short period of
time (while the file system lnitializer manipulates
directory segments), missing segment faults will
occur for segments that are not in the SLT. These
faults will be directed to interim2_segfault by
the interim fault interceptor; but interim2_segfault
cannot accomplish its job withoGt SLT entry. In
this case, interim2_segfault passes the fault to
the Multics missing segment fault handler, which
is ready to handle this type of fault.

During exP.cution of Part 3, none of the existing
segments can be deactivated. This is guaranteed
by setting the necessary 1'hold switches•• in the
AST entry.

Call fault_init $one (BL.9.01)

The fault interceptor and its data bases are
initialized. The fault interceptor will be switched
to only in Part 4; the reason why this call is issued
in Part 2 is that the processor communication tables
will be needed in Part 3 by the connect fault handler
(see 8 L. 5. 02).

a. The value lp-lb for the fault interceptor
is obtained and stored 11 inside11 the fault
interceptor procedure.

b. Pointers to various locations of the concealed
and the processor stacks are built and stored
1' ins i de11 the fau 1 t interceptor procedure.

c. The processor communication tables are
initialized.

d. Entries in the process definition segment
that are used by the fault interceptor are
initialized.

Note that the concealed stack is not initialized in
this call since it has already been initialized by
the bootstrap initializer.

r
MUL TICS SYSTEM- PROGRAMMERS"' MANUAL SECTION BL. 5. 01 PAGE 13

5. Call interim fi $ use mode 2 (BL.5 .02) - - -
Up to now, the interim fault interceptor was directing
missing page faults and missing segment faults to the
segments 11 interim1_pagefault11 and 11 interim1_segfault"
respectively.

Upon return from this call~ it directs them to the
segments 11 Pagefault" and "interim2_segfault11 respectively.

The standard Multics dynamic memory allocation mechanism
is now operational.

Description of Part 3
I

The main purposes of Part 3 are to:

a. Initialize the rest of the system configuration table.

b. Load the rest of the hardcore supervisor segments
using the Multics missing page fault handling and
the interim 2 missing segment fault handling made
available in Part 2.

c. Combine linkage sections and perform the prelinkage
of hardcore supervisor segments that have been
loaded.

d. Establish branches in the hierarchy for segments
already loaded from the MST.

e. Make the Multics missing segment fault handling
available.

The following calls are issued from the initializer control
program:

1. Call segment_loader (BL.6.01)

When invoked at this point the segment loader reads
the Part 3 supervisor loadlist (collection 8).
This loadlist contains the names of all the supervisor
and initialization segments that have to be loaded
from the Part 2 supervisor library (collection 9).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5 .01 PAGE 14

2.

3.

Then the segment loader reads the segments mentioned
in the loadlist from collection 9. Among them are
the rest of the hardcor~ supervisor segments, that is
all the hardcore superv1sor segments that have the
status "loaded", "active" or "normal••.

At this point, the hardcore supervisor is completely
loaded. '

Call pre_linker $ combine_set (BL.7.02)

For all the hardcore supervisor segments that have
been loaded in Part 3 and that have a "must-be
combined" linkage section, the linkage section
information is combined in the appropriate special
linkage segment. (wired_hcs. link, loaded_hcs. link or
active_hcs. link).

Then, for all external re~erences made in any hardcore
supervisor segment that is in core, to any segment that
is also in core, the link pairs in the hardcore
supervisor linkage sections are changed from faults
to correct machine addresses.

At this point, the hardcore supervisor is completely
prelinked, as far as int~r-references within the
hardcore ring are concerned. References to segments
outside of the hardcore ring will be prelinked in
Part 4.

Call segment_loader (BL.6.01)

When invoked at this point the segment loader reads
the second part of the ,configuration loadlist (collection
10). This loadlist contains the names of all the
segments that have to be read from the second part
of the configuration llbrary (collection 11).

Then the segment loader reads the segment mentioned
in the loadlist from collection 11.

These segments are the segments in symbolic form
needed to build the rest of the device configuration
table (OCT). They will be translated into binary
form and stored in the OCT by a call to io_init_2.

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BL.S.01 PAGE 15

4. Call fs_lnlt_3 (BL.10.04)

This call to the file system lnltlalizer establishes
branches in the hierarchy for segments loaded from
the MST, ·so that the Multlcs s~rnent fault handler
can operate properly. The following act ions are
taken:

a. Initialize the filE! system static storage constants.

b.· Initialize· t~ nhrrnal· process wait.ing table (PWT)
to. appear empty. · · ·

t. Ihitialize the known !Segment table (KST) for the
future Multlcs lnltlallzer process.

d. Create an entry ln.the hardcore segment table (HST)
for each hardcore supervisor seQment. ,

e. · Create an entry in the active segment table (AST)
· fo.r the root ·directory. · · · ·. .

·g •.

. h.

1 •

If the hlerare·hy. must be restored,· c-reate 2 . . ,
directory branches a .. 11 system_root'' for segments ·
of the Mu1tlcs lnitlallzer. the hardcore . . .
supervisor. and the hierarchy reconstr~ctlon·
process, and *'Mu 1 t lcs_root11 for a 11 other segments.

. . ,.

Establish branches in the file. system hierarchY,
for ~ll the .se~ments listed in .the SLT. · · :

Update the HST. to include tt,e unique identifiers
of the hardCore supervisor segments. ·

. For each segment listed in the SL T, thcst has an
AST ent.ry_, a KST e.ntry_ Is built. and the AST entry
is linked to the AST entry of its parent directory
segment.: · i

From this point on. the Mu'ltic·s initiallzer appears
_to. t'he file system as .an aetive and loaded process.

" ' ' . '

5. Call lntertm_ifl.': $ use_mode,._3 (BL.S .02.)
Upon return, ·i=lrom· t"'ls. eal 1'.--'.the. l11tertm fault
interceptor does net dl'rect missing segment· faults

I

,.
I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION RL.5.01 PAGE 16

to "interim2 segfault" but to the Multics "segfault''
segment, so that this fault is handled by the standard
Multics mechanism.

At this point, the Multics missing segment fault
handler is operational.

Description of Part 4

The main purposes of Part 4 are to:

a. Complete file system initialization, and reload
hierarchy if necessary.

b. Arrange the linkage for references from the hardcore
supervisor to segments in other protection rings.

c. Complete I/0 system initialization.

d. Initialize the Multics fault interceptor and switch to it.

e. Initialize the traffic controller (not needed in Phase I).

The following calls are issued from the initiali.zed control
program:

1. Call fs_init4 (BL.10.04)

The following actions are taken by the file system
in it i a 1 i ze r:

a. For each segment listed in the SLT with the
status "normal", the AST entry hold count is
reduced by 1, and the ·AST entry is removed if
the segment should be deactivated at this time.

b. If the file system hierarchy must be reloaded,
load from the MST all segments required to
operate the hierarchy reconstruction process.
These segments are in collection 12.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.01

2. Call pre linker$ redirect (BL.7.02)

For all references from the hardcore ring to other
protection rings, the link pairs are redirected
through a special linkage segment 11 out_hcs.link11

that may be referenced later.

PAGE 17

At this point all linkage faults have been eliminated
from the hardcore supervisor.

3. Call io_init_2 (BL.8)

The rest of the device configuration table (OCT) is
manufactured. The OCT is part of the system
configuration tables. The first portion of the OCT
has been initialized in io_init_1. All configuration
segments needed to build the rest of the OCT have
been loaded with Part 2 configuration segments; they
are in symbolic form; they are translated by io_init_2
into binary form and stored in the OCT.

Then the tape controller interface module (TCIM) and
its data bases are initialized.

4. Call fault_init $two (BL.9.01)

This call, initializing the fault vector to its final
form, causes the Multics Initializer to switch from
the interim fault interceptor to the Multics fault
interceptor.

5. Call tc_init (BL.11)

Traffic controller initialization is not needed in
Phase I; it is included here as a reminder for later.
This call,performs the following steps:

a. Initialize the Known Process Table (KPT) and
create an entry for the Multics Initializer.

b. Initialize the Active Process Table (APT) and
create an entry for the Multics Initializer.

c. Initialize the process data block with
information that belong's to the Mut 1 ics
I n i t i a 1 i ze r •

,..
'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.01 PAGE 18

6.

7.

d. Initialize the processor data block with process
id of the Multics Initializer and with information
that belongs to the running processor.

e. Initialize data bases of the process creation module.

f. Create necessary system processes specified in the
system configuration table (in particular 1 the file
system device monitor process is created).

g. Enable the functions 11 8lock11 and 11 Wakeup''.

h. Initialize all other processors by creating
an idle process for each of them.

Upon return from this call the Multics Initializer is
a normal Multics process.

Call fs windup (BL.10.04)

This call is made to the file system initializer to
return all core which was required to be wired down
only to make possible the initialization. Since the
Multics Initializer is now a normal process~ these
pages can be paged normally.

Call Multics $ system_control (BQ.O)

Multics is now in operation and capable of standing
alone as an operating system. A return from this
call means that the system is to be shut down.

8. Ca 11 shut_down ·
I

The following actions are taken to shut down the system:

a. Finish anY pending I/O

b. Page out the remaining pages

c. Stop all processors

