
MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.S.02 PAGE 1 

PubliShed: 05/26/67 

Identification 

Fault handling during initialization 
A. Bensoussan 

Purpose 

This section describes how faults are handled during execution 
of the Multics initializer; it also provides a description 
of the interim fault interceptor module. 

Introduction 

During Multics initialization. before the Multics fault 
handling mechanism is in operation. only 5 types of faults 
are expected. They are: 

a. Linkage fault 

b. Missing page fault 

c. Missing segment fault 

d. Timer runout fault 

e. Connect faUlt 

The reason why linkage faults. missing page and segment 
faults are expected is explained in BL.5.00. The timer 
runout fault may occur at any time and must not be considered 
as an error; it wi 11 be ignored by the Multics initializer, 
except during the traffic controller initialization (see 
BL.11). The purpose of the connect fault, in Multics~ 
is to clear the associative memory of the faulting processor; 
during Parts 3 and 4, the paging mechanism is in operation; 
each time a page is to be removed, page control sends 
a connect signal to all processors in the system. 

When one of these 5 faults occurs the fault vector stores 
the control unit information in the concealed stack and 
transfer-s to the 11 interim fault interceptor" (IFI ); the 
IFI saves the processor state, identifies the fault and 
calls the appropriate handler. 

Fault handlers and Modes 

The fault handler called by the IFI for a giv~n fault . 
is not necessarily the same during the whole initialization. 
In fact, most of the time, the handler to be called depends 



MULTICS ·SYSTEM-PROGRAMMERS' MANUAL SECTION BL.s.o2 
·~· fl 

PAGE 2 1 

on what Part of the initialization the fault occurs. 
For instance. if a missing page fault occurs during Part 
1. the IFI calls 11 interim1_page fault". while if Part 
3 it would call the Multics page fault handler. 

Therefore the IFI runs into three different modes: 

Mode 1 is active during Part 1 and Part 2 

Mode 2 is active during Part 3 

Mode 3 is active during Part 4 

The IFI can determine the current active mode by testing 
the value of its variable 11 mode11 ; it can switch from one 
mode to another by setting the variable "mode" to the 
appropriate value when it is told to do so by a call from 
the initializer control program. Figure 1 indicates the 
appropriate handler to be called by the IFI for.each fault 
and each mode. The functions performed by these handlers 
and the calling sequenc~s are described below. 

1. Linkage fault 

In any mode the handler is the initia1ization 
linker. The calling sequence is: 

ca 11 linker (mach_cond.er _ret.er _code.option) 
/*See BL.7.,01*/ 

2. Missing page fault 

a. Mode 1: the interim 1 page fault handler is 
called. Which allocates the core required for 
the page and sets the page table word. The 
calling sequence isa 

call inter1_pagefault (scuptr) /*see BL.6.03*/ 

b. Mode 2: The Multics page fault handler. now 
available. is called to handle a missing page 
fault. The calling sequence is: 

call pagefault (scuptr.dbrptr.errcode) 
/*see BG.4.00*/ . 

c. Mode 3: same as b. 

..,. . 

•• i 

·ll 
., 



,.. MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.S.d2 PAGE 3 

3. 

4. 

Missing segment fault 

a. Mode 1: The interim 1 segment fault handler 
is called, which allocates the required core 
for the page table. manufactures the page 
table showing that all pages are missing and 
sets the descriptor segment word to point to 
the page table. The calling sequence is: 

I 
I 

call interim1_segfault (scuptr) /*see BL.6.03*/ 

b. Mode 2: The fault handler used in mode 1 
cannot be used in mode 2 because page control 
is in operption and expects the missing segment 
fault handler to perform more jobs: create 
Active Segment Table (AST) entry, set page 
table word to point toAST entry etc ••• (See 
BL. 10.02). Since the Mu 1 tics missing segment 
fault is not available yet, a second interim 
handler is called, which is compatible with 
page control. The calling sequence is: 

call interim2_segfault (scuptr,dbrptr,ringno, 
errcode) /*see BL.10.02*/ 

The ring number is ZERO. 

c. Mode 3: The Multics handler, now available, 
is called. The calling sequence is: 

call segfault (scuptr,dbrptr,ringno,errcode) 
f-.'rsee BG. 3. 00* I 

The ring number is ZERO. 

Timer runout fault 

a. Mode 1: The fault 
no handler. 

is ignored by calling 

b. Mode 2: The fault is ignored by ca 11 i ng 
no handler. 

c. Mode 3: The Multics timer runout procedure 
is implemented as an internal procedure in 
the Fault Interceptor and cannot be called 
by the IFI. The handler which is called 
performs the same function as an internal 
procedure in the IFI. The calling sequence is: 

call timer_runout /*see interim fault interceptor*/ 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.02 PAGE 4 

This handler generates a timer runout interrupt 
for the processor on which it is executed. It 
should be noted that the timer runout interrupt 
handler ignores the timer runout interrupt if 
the "drain" switch in th~ process data block is 
ON# which disables the timer runout interrupt. 

When the traffic controller initializer creates 
the File System Device Monitor process~ in Part 
4, it expects the timer runout interrupt to 
occur (BL.11). By setting the drain switch ON 
or OFF, the traffic controller initializer can 
disable or enable the timer runout interrupt as 
it wishes. 

5. Connect Fault 

a. Mode 1: The fault is ignored by calling 
no.handler. 

b. Mode 2: The connect fault is generated when 
a page is to be removed in secondary storage 
by page control. The action taken by the 
connect handler is to clear the associative 
memory of the fauiting processes. The calling 
sequence is: 

call connect /*see interim fault interceptor*/ 

The Multics connect handler is implemented as 
an internal procedure in the Fault interceptor 
and cannot be called by the IFI. The handler 
called by the IFI performs the same function 
and is implemented as an internal procedure in 
the IFI. 

c. Mode 3: same as b. 

Interim Fault Interceptor 

The interim fault interceptor (IFI) is an adaptation of 
the Multics fault interceptor for initialization purposes. 
It is transferred to by the fault vector when an expected 
fault occurs during initialization. 

The following actions are taken when the IFI is entered 
after an expected fault: 

a. Save the processor state in the concealed stack 



.~ 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.02 PAGE 5 

b. Set lp-lb to point to the linkage section of the IFI 

c. Allocate a new .interrupt frame in the concealed stack 

d. For linkage and missing segment faults only, switch 
from the concealed stack to the hardcore stack 

e. Call the appropriate fault handler depending on the 
fault and also on the mode in which the IFI is 
currehtly running 

f. For linkage and missing segment faults only, switch 
back to the concealed stack 

g. Return the current interrupt frame 

h. Restore the processor state 

All these steps, except step e, are described in detail 
in the fault interceptor section (BK.3.03). Step e has 
been described in the previous paragraph. 

Internal procedures in the IF..I 

As said above~ the timer runout and the connect fault 
handlers called by the IFI are implemented as internal 
procedures in the IFl. Their functions are identical 
to the functions executed by the Multics handlers, that 
is: 

1. Timer ·runout procedure 

.a. 

b. 

c. 

Obtain the processor index number (0-7) from 
the processor data block. 

Use the processor indeX number to obtain the 
appropriate pattern for setting the time out 
interrupt cell for the processor on which the 
IFI is executing. This pattern is found by 
using the processor index number into the time 
out pattern array of the processor communication 
table (see BK.1.04). 

Set up and execute a 11 set memory controller 
interrupt cell 11 instruction whose address 
points to the memory controller through which 
the time out interrupt signal is seht to that 
processor. 



r 
MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BL.5 .02 PAGE 6 · r 

2. Connect procedure 

a. Obtain the processor index number (0-7) from 
the processor data block. 

b. Execute a 11 clear associative memory" instruction. 

c. Clear the connect flag array entry for the 
executing processor in the processor corrmunication 
table (BK.1 .04). 

Enttv points of·the IFI 

The interim fault interceptor has 3 entry points: 

1. <interim_fi>l[interim...-fi] 

2. <interim...-fi> I [use_mode_2] 

3. <interim_fi>f[use_mode_3] 
I 

The first entry is transfered to by the interrupt vector 
when any of the 5 expected faults occur. 

The second entry is called by the initializer control 
program at the end of Part 2. The action taken by the 
IFl is simply to set the variable 11 mode11 to the value 
2. . 

The third entry is called by the initializer control program 
at the end of Part 3. The action taken by the IFI is 
simply to set the variable "mode" to the value of 3. 

Description of the fault yector 

When the Multics ini.tializ~r is entered, the fault vector 
has been initialized by tbe bootstrap initializer in the 
following manner z · 

1 •. for the 5 expected: faults mentioned above, the fault 
pa i rs contain: · 

scu = its(pds, scuptr,*),* 

··; · .. 

store control unit in 
concea 1 ed stack · : 

. : t ,, 
transfer to· ~~i•nterim 
fault interceptor 

. ~. ·-. 

.. 



r 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.02 PAGE 7 

2. 

where "pds" represents the se~ment number of the 
process. data segment~ "scuptr' represents the offset 
of the SCU pointer in the process data segment~ 
"ifi 11 represents. the segment number of the interim 
fault interceptor and 11 entry" represents the offset 
of the entry point in the interim fault interceptor. 
This entry point is unique for all 5 faults. 

For any other fault~ the fault pairs contain: 

scu = its(stop~ control_unit);* store control 

tra = its(stop. entry).* 

unit in segment stop 

transfer to segment 
stop 

where 11 stop" represents the segment number of the 
segment stop~ 11 contro1 unit" represents the offset 
of the location where the control unit is to be 
stored in the segment stop and "entry'' represents 
the offset of the entry point in the segment stop. 
A transfer to the segment stop means that a fatal 
error has occurred and that the Mu1tics initializer 
has to stop. 

The fault vector remains in this state during almost the 
whole execution or the Multics initia1izer. It wi 11 be 
changed in Part 4 by a call from the initializer control 
program to the fault initializer (call fault_init ~-two). 

Upon return from this call~ the fault vector wi 11 be set 
to the final form required by the Multics system and will 
cause the Multics initia1izer to switch from the interim 
fault interceptor to the Multics fault interceptor. 



r 
MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.5.02 PAGE 8 

Mode 1 Mode 2 Mode 3 
(Part 1 and 2) (Part 3) (Part 4) 

linkage fault 1 i nker linker 1 i nker 
,, 

page fault interim1 
pagefau(t 

pagefault pagefault 

segment fault interim1 interim2 segfault 
s~gfau1t- segfault -

time out fault none none timer runout 

connect fault none connect connect 

This figure provides, for each fault, the handler called 
by the interim fault interceptor in each mode. 

Figure 1 


