
,.. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.03 PAGE 1 

Published: 06/15/67 

Identification 

Interrupt handling during initialization 
A. Bensoussan 

Purpose 

This section describes how interrupts are handled during 
initialization. 

There are 2 distinct periods during initialization as 
far as the interrupt handling is concerned. During the 
first period, only interrupts coming from the bootload 
GIOC, following a read operation from the Multics System 
Tape, are expected. The second period starts in Part 
1, as soon as the GIM and the Interrupt Interceptor are 
initialized and lasts the rest of the initialization; 
during this second period, the interrupt interceptor is 
in operation and can handle any interrupt. 

First period 

The only interrupt that is expected is the interrupt coming 
from the bootload GIOC when the tape reader reads the 
MST. The configuration is not ~nown yet but the interrupt 
is expected from the bootload GI'OC, status channel 0 or 
1. We know that, by a Multics convention (BC.1.04), status 
channels 0 and 1 are assigned interrupt cell number between 
0 and 11 in any GIOC. Therefore the bootstrap initializer 
has set the interrupt pairs 0 to 11 with SCU/TRA instructions 
in the 64 word interrupt vector block associated with 
the memory controller containing the base address of bootload 
GIOC. The base address of this 64 word block was passed 
by the bootload program to the bootstrap initializer through 
an index register (Register 1). 

Interrupt pairs 0 to 11 are set as follows: 

scu =its (tape_reader, control_unit),* 

tra =its (tape_reader, interrupt),* 

where '' tape_reader" represents the segment number of the 
tape reader, "control_unit" represents the offset of the 
location where the control unit is to be stored in the 
tape reader segment and 11 interrupt•• represents the offset 
of the entry, In the tape reader, that handles the tape 
interrupt. · 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.5.03 

Any other interrupt sent to the processor used by the 
bootload causes the Multics initializer to stop. 

PAGE 2 

For reading the MST., the tape reader sets its word "event_ce 11" 
to the value 0; then it issues a connect GIOC instruction 
and loops., waiting for the value of event cell to become 
non-zero. When the interrupt occurs., the-interrupt vector 
transfers to the entry ''interrupt'' in the tape reader., 
which sets event_cell to the value 1 and restores the 
control unit. 

Second period 

After the system configuration table., the GIM and the 
interrupt interceptor have been initialized., a call is 
issued., in Part 1., to the interrupt initializer for setting 
the fault vector to its final form. The second period 
starts when a return from this call is experienced. From 
this point on the Multics initializer can execute I/O 
operations in any secondary storage device available to 
the file system. 

During the second period, all interrupts sent by any device 
will be handled by the Multics mechanism, except that 
the module "wake-up'' performs a specia 1 function during 
initialization. That is: 

a. The interrupt vector transfers control to the appropriate 
entry in the interrupt interceptor. 

b. The interrupt interceptor calls the appropriate interrupt 
handler. 

c. The interrupt handler signals, in the Device Signal 
Table (DST)., the fact that the device has sent an 
interrupt., and calls wake-up for the process associated 
with the device. 

d. Wake-up performs a return. 

Multiprocessor System Initialization 

In a multiprocessor system initialization, the processor 
P(O) used by the bootload is not the only processor invoked 
by the Multics initializer. Any other processor P(i) 
may be awakened by an interrupt or a fault; the reasons 
are the following. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.03 PAGE 3 

a. Interrupt. In Part 1, the configuration is made known, 
the GIM and the interrupt interceptor are initialized; 
from this point on, the file system initializer can read 
and write in any secondary storage device available to 
the file system in this configuration. When an I/O 
operation is completed, that has been requested by P(O), 
an interrupt is sent not necessarily to the processor P(O) 
but to the processor that happens to be the control 
processor for the memory controller containing the base 
address of the GIOC or drum involved in the I/0 operation. 
Therefore, this processor must be prepared to receive 
an interrupt. 

b. Connect faulto During Part 3 and Part 4, when a page 
is to be removed in secondary storage, associative 
memories of all processors have to be clearedo As 
explained in BK.3.08, when a Multics module must clear 
associative memories of all processors in the system, 

c. 

it issues a call to the master mode procedure 
11 connect_generator11 o This routine sends a connect signal 
to each processor in the system. 

A timer runout fault may occur at any time while 
processor P(i) is handling the connect fault or an 
interrupt. 

When the bootload button is pushed, the processor P(O) 
is interrupted; it executes the bootload program and the 
bootstrap initializer in which it is given a descriptor 
se~ment and the associated DBR value; any other processor 
P(1) is sitting on a DIS. 

In Multics, all processors have the same base address. 
Therefore any attempt to wake-up a processor P(i) by a 
fault or interrupt will cause P(i) to jump at the corresponding 
location in the fault-interrupt vector and to execute 
the pair instruction stored at this location. If the 
pair instruction is an SCU/TRA using the appending mode, 
this implies that the processor has been initialized, 
that is, it has been provided with a descriptor segment 
and the associated DBR value. 

The most general solution is to have any processor P(i) 
execute the same fault or interrupt handler that would 
be executed by the processor P(O). This implies that 
any processor P(i) is provided with a descriptor segment 
describing all segments needed for the fault and interrupt 



,.. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.5.03 PAGE 4 

handling and that this descriptor segment describes a 
process data segment and a processor data segment that 
are private segments for processor P(i); furthermore the 
processor index number must be entered in the processor 
data block (this number is used by the timer runout fault 
handler and by the connect fault handler). 

This will be done by a call to an entry of the traffic 
controller initializer, issued in Part 1 by the initializer 
control program, before fs_init_1 is called. 

It should be noted that any processor other than P(O) 
is used only for handling an interrupt, a connect fault 
or a timer runout fault. After having handled the fault 
or interrupt handler, the processor returns to wait on 
a DIS. 


