
,, - ~

HULTICS SYS'l'E~1-PROGHAt-FlliH.S 1 r-1ANUAL SEC'l'IOH BL. 6. 0 3 PAGE 1

Published: 10 April 1967

Identification

Initializing Core Manager
IJ. H. Johnson

Purpose

The initializing core manager does core storage allocation for
the Multics Initializer until ~he file system is capable of
perfonning this function. It consists of procecures to nandle
missing page and segment faults and to maintain the interim core
map.

Introduction

From the beginning of the Initializer Control Program (see MSPM
BL.5.01) until the end of part 2 when procedure
interim fi$use mode 2 is called to s\d tch the core allocation
responsibility-to the file system, the initializing core manager
does all core storage management for the Multics Initializer.
The initializing core manager uses the interim core map and the
segment loading table (SL'l') as its primary data bases. 'l'he
initializing core manager module resides in three segments.
Their names and responsibilities are outlined belm1.

1. core _manager

'l'his segment consists of three procedures;

assign core - removes a hyperpage of the requested size from
the interim core ms.p and revises the core map accordingly,

update core map - expands the interim core map using the
exact c"ore memory configuration for Hultics described in the
system configuration table, and

free core releases the core assigned to
segments and updates the interim core map to
freed core.

'l'his segment also contains the interim core map;

'temporary'
include b1e

core map - an array of entries describing blocks of unused
core-storage.

2. interiml_pagefault

'l'his segment contains one procedure;

HULTICS SYSTEH-PROGRA.HI•!ERS 1 Hi\NUAL SECTION BL.6.03 PAGE 2

interiml pagefault - assig_ns a hyperpage to a segment when a
missing page fault occurs-.

3. interiml_segfault

This segment consists of a single procedure;

interiml segfault - assigns a page table to a segment when a
missing segment fault occurs and also assigns a hyperpage
corresponding to the segment address referenced.

The interim core
described in this
BL.2.0l.

Interim core map

map and
document.

the core
The SLT

manager procedures
is ~escribed in

are
MSP:·l

The interim core map is a fixed length taole of entries
describing available but currently unassigned core storage. For
convenience, tne table is kept in the segment, core manager.
Eacn entry in the table contains two items which describe an
available contiguous area of core. The items are:

a. the absolute address (0 mod 64) of the first word of an area
of core

b. the number of contiguous 64 word blocks in the area

The interim core map is initialized by the Bootstrap Initializer
(see HSP.N BL.4.02) \vith one entry \·Thich defines ti1e unused core
based on an assumed configuration. Other entries are added to
the core map \vhen the Hultics hardHare configuration is knmvn and
when 'temporary' segments are released. 'l'hese two events are
described belmv in procedures update core map and free core
respectively. The core map entries are ordered in ascending
sequence of the absolute address items.

The core map is declared by the follo\ving PLII statement.

del 1 core manager$core map ext,
2 current size fixed, I* current number of entries

- in the core map *I
2 bootstrap_cciling fixed,

I* highest address in meQory assumed
by Bootstrap Initializer *I

2 entry(N), I* N is decided upon at compilation *I
3 address oit(l8), I* absolute address 0 mod 64 *I
3 blocks bit(l8); I* number of 64 word blocks *I

I* if 0, the entry is vacant */

l1ULTICS SYSTEH-PROGRAHHERS' HANUAL SECTION BL.6.03 PAGE 3

Procedures

The primary core manager procedure is assign core, \-lhich
satisfies requests for blocks of core storage. It is called by
the interiml pagefault and interiml segfault procedures. This
procedure is-entered by the statement:

call core manager$assign core (search S\v, page 64 sv1,
- - hyperpage_size,abs_loc)

The arguments are declared in the PLII statement:

del search sH bit(l) 1 I* ON if bottom up,
OFF if top dmvn *I

page_ 64 _sw bit(l), I* ON if G 4 vvord page ,
OFF if 1024 word page *I

hyperpage size bit(8), I* in units of page size *I
abs loc bit(l8); I* absolute location

of hyperpage assigned *I

':L'his procedure examines the core map for an entry vlhich describes
an area of core that satisfies the request. The address of the
core area is returned in the argument, abs loc. If the request
can not be satisfied, system initialization stops.

The search algorithm used on the core map represents a simplified
attempt to keep the \-:ired dovm hard-core supervisor separate in
core from the rest of the Hultics Initializer. This is done to
minimize t11e holes in the \vired dmvn area of memory. The core
map ·entries are searched in the order specified by the argument,
search sw. The procedures that call assign core will set
search-sw OFF only \vhen requesting blocks for the wired down
hard-core supervisor (\vired down segnents, page tables for wired
dmvn segments, and page tables for loaded segments). This has
tne effect of putting the wired dmvn supervisor in lo\ver
addressed core and the initializer and active supervise~ in
higher addressed core.

The steps taken ny procedure assign_core are:

1. Determine the mode
is ON, begin searching
necessary, move up the
from the bottom of the
begin searching at the
the list. Examine the
describes.

of searching the core map. If search S\'l

at the last core map entry and, -if
list. Also, examine the core map entry
area it describes. If search sw is OFF,
first entry and, if necessary, move dovm
core map entry from the top of the area it

2. Determine \vhether the entry examined is capable of providing
a hyperpage of the desired page size and length. Arguments
page_64_sw and hyperpage_size describe the requested area.

SECTION BL.6.03 PAGE 4

If the core area described by the entry contains a hyperpage of
,,...., the requested size, place the address of the beginning of ti1e

hyperpage in abs loc. Update the core map entry. If the
hyperpage was taKen from the middle of the area, the blocks
skipped over are lost from the interim core map. Return to the
caller.

If the entry can not satisfy the request, go to step 3.

3. Determine whether there is another entry in the core map. If
there is, go to step 2. Otherwise, stop system initialization.

When the interim fault interceptor, operating in mode 1 (see HSPN
BL.5.02), gets control after a directed fault zero, it calls
either the interim page fault handler or the interim segment
fault handler for that mode. The page fault handler is called as
follows:

call interiml_pagefault(scuptr}

where scuptr is a pointer to three double words containing
information stored by an scu instruction when the fault occurred.
~1is procedure does the following steps:

1. The scu information is interpreted to
missing page is a descriptor segment page.
descriptor segment page, go to step 6.

determine
If it is

if the
not a

2. Call procedure assign core to obtain a 64 word page for the
descriptor segment. 'l'he procedure arguments are set as follmvs:

search sw - OFE'
page 64 sw - ON
hyperpage_size - 1

3. Prepare a page table word pointing to the assigned page and
store it into the. descriptor segf:'l.cnt page table. The access
control field is set to write permit, slave access, master
procedure.

4. Fill the assigned page with directed faults (segment faults).

5. Return to the calling procedure.

6. 'l'he scu information is examined to determine the number of
the segment getting the missin'3' page fault. This number is then
used to reference the SLT entry for the segment.

7. Call procedure assign core to obtain a
core map. 'l'he SL'l' entry 'Items are used to
passed to assign core. If tlw status i tern
indicates that tile segment is \'!ired dmm, set
otherwise, set it to O:N. 'l'he page_ 6 4 _ sH

hyperpage from the
set .the arguments
in the SL'l' entry
search sw to OFF;
and hyperpage_size

J.lUL'l'ICS SYSTEM-PROGIW,!£1ERS' 1'11\J.'JUAL SECTION BL.6.03 PAGE 5

arguments are taken directly fx;om the S.L'L' entry and passed to
assign_ core.

8. The page table word(s} are filled in with the address(es) of
the hyperpage. The access control field in each page table word
is set to write permit, slave access, master procedure. The
hyperpage is filled wici1 zeros.

9. Control returns to the caller.

The segment fault handler is called as follows:

call interiml_segfault(scuptr) . ,
where scuptr has
interiml_pagefault.

the same meaning as in the call
This procedure does the following steps:

to

1. The scu information is used to determine the number of the
segment getting the missing segment fault. The SLT is checked to
see if the specified segment number corresponds to a valid entry
in the SL'l'. If the segment number is not valid, system
initialization stops.

2. Call procedure assign core to obtain a hyperpage to be used
for a page table. The SLT entry items are used to set the
arguments passed to assign core. If the status item indicates
that the segment is vlired dmvn or loaded, set search S\v to OFF~
otherwise, set it to ON. 'l.'he argument, page 64 sw, is set ON.
'l'he SLT entry items maximum length and 64 word paged svlitch are
used to determine the size of the page table and also the
descriptor boundary field value used in step 4. The page table
size is set in the argument hyperpage_size.

3. The directed fault zero in the descriptor entry word is
replaced by a temporary descriptor. The temporary descriptor
allows the interiml segfault procedure to reference the page
table as an unpaged-data segment and fill it witi1 directed faults
(page faults).

4. The real descriptor for the segment is placed in the
descriptor entry \·lord. The address continues to point to the
page table. The boundary field value , calculated in step 2, is
placed in the boundary field. 'l'he SLT item 64 \vord paged switch
is placed in the page size bit in the descriptor word. The
paging bit is set to indicate the segment is paged. The SLT item
access is placed in the right most 6 bit field of the descriptor
\vord.

5. Call procedure interiml pagefault to assign the hyperpage
\vhich corresponds to the: address being referenced ,.,hen the fault
occurred.

NULTICS SYS'l'EH-PROGRAHHERS 1 HANUAL SECTION BL.6.03 PAGE 6

6. Control returns to the caller.

There are two procedures that expand the interim core map. After
the Initializer Control Program has .loaded the system
configuration table it issues the follmving call:

call core_manager$update_core_map ;

This procedure does the following steps:

1. Exrunine the system configuration table to find out the exact
core memory available to Hultics. The system configuration table
(see MSPM BL.3.01) information examined includes:

a. memory address range for each system controller
b. processor base address
c. mailbox addresses for each GIOC
d. mailbox addresses for each E.HH

2. Interim core map entries are constructed for all of the
Nultics memory that is not represented in:

a. Bootstrap Initializer assumed memory, or
b. GIOC and E£-IH mailboxes that are not within the Bootstrap

Ini tiali zer as stuned memory.

The Bootstrap Initializer assumed memory begins at the processor
base address and ends at the address given in the interim core
map item bootstrap_ceiling.

3. 'l'he interim core map is sorted on the absolute address field
to keep the entries in ascending order.

4. Control returns to the caller.

Before the Initializer Control Program enters part 2, it calls
the follm·ling core manager procedure:

call corc_manager$free_core . ,
This procedure releases all initialization segments that are no
longer needed and returns the core occupied by them to the
interim core map. The procedure does the follmving steps.

1. A pass is made through the initializer entries in the SLT to
locate the segments to be released. Each initializer entry is
examined as follows:

a. If the temporary segment sv;itch is OFF, this segment may not
be released. The entry is skipped and the next entry is
tested.

l1UL'l'ICS SYS'l'EH-PROGHAPJ1ERS' HANUAL SEC'l'ION BL. 6. 0 3 PAGE 7

b. Othenvise, the segment may be released. The descriptor entry
word for the segment is modified so that its page table may
be referenced by free core as an unpaged data segment. The
page table entry words are examined and used to construct
core map entries. After all of the pages have been returned
to the core map, the page table itself is returned to the
core map. A directed fault seven is placed in the descriptor
segment entry. Control then goes to step a. to examine the
next SLT entry.

2. ~vhen all of the 'temporary' segments have been released, the
core map is sorted on the absolute· address field to keep the
entries in ascending order.

3. Control returns to the caller.

