
J 

TO: 
FROM: 
SUBJ: 
DATE: 

MS PM D i s t r i but ion 
D. Widrig 
BL. 1 .03, BL.6.03, and BE.15.02 
, 0/02/67 

Section BL. 1.03 is a major revision of BE.15.02 and complci:el' 
obsoletes it. 

Section BL.6.03 describes the module which initializes 
the Multics Core Control modules and is a complete replacement 
of the interim program described in BL.6.03 dated 4/10/67. 



/ 
f MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.03 PAGE 1 

Published: 10/02/67 
(Supersedes: BL.6.03, 04/10/67) 

Identification 

Core Control Initializer 
T. P. Skinner, M.A. Padlipsky 

Purpose 

The Core Control Initializer (CCI) is a procedure which 
must be called by the Multics Initializer before the Basic 
File System's Core Control Module (CCM) may be utilized. 
Essentially, the role of the CCM is to tabulate used and 
unused areas of core memory so that space may be found 
for new pages when they are brou~ht in from secondary 
storage; see BG.6. Up to the po1nt in the initialization 
process at which the CCI is called, contiguous locations 
in core have been assigned as needed by the early initialization 
routines, beginning from the Bootload base. After the 
CCI has operated, the CCM wi 11 have the necessary information 
as to current core usage that will enable it to operate 
as if Multics were initialized and running. 

Discussion 

The CCM must be furnished with two basic kinds of information. 
First, and more straightforward, is information about 
large blocks of memory which are physically available 
to the particular Multics system being initialized. Such 
information is transmitted by the CCI through a call to 
the CCM entry initcm, which is one of the two basic entries 
to the CCM for initialization purposes. (From the CCM's 
point of view, the call to initcm allows the "Core Mapl•--the 
primary data base of Core Control--to be initialized.) 
The CCI derives its information about currently-available 
physical core from the initialization mechanism's Major 
Module Configuration Table (see BL.S). If, for example, 
the middle 64K of memory should be down for some reason, 
this fact would be reflected in the MaJor Module Configuration 
Table and the CCI would not make the aTfected locations 
a~ailable to Core Cont~ol in the call to initcm. 

The second kind of information with which the CCM must 
be furnished is that relating to the current usage of 
core. Existing segments and page tables must be accounted 
for, both as to core location occupied and as to "status". 
Status information, including such items as whether or 
not the segment is wired down and whether or not the segment 
belongs to the initialization mechanism, is gleaned from 
the SLT (see BL.6.02) and from the current descriptor 
segment. It is passed to the CCM by means of the latter's 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.6.03 PAGE 2 

second basic entry for initialization purposes, assign_at_loc. 
The CCI must call assign_at_loc to account for each 64-word 
block of core, whether it is part of a page table, hyperpage, 
or entire unpaged segment. (Each call of this type creates 
what Core Control defines as a 11 group". Each group wi 11 
remain as one unit until and unless it is freed by a call 
to the remove entry in Core Control.) 

Implementation 

The Core Control Initializer comprises a single procedure, 
init_core_control. Figure 1 presents a block diagram 
of init_core_control. The major portion of the CCI's 
work is performed by a r~peatedly called internal procedure 
named~. Figure 2 presents a block diagram of core. 

The logic of init_core_control is as follows: 

1. Obtain pointers. Pointers to the SLT, the current 
descriptor segment, and 11 abs_seg11 are necessary. They 
are gotten through use of the following call: 

2. 

3. 

4. 

5. 

Call s lt_manager~get_seg_ptr(name, ptr); 

(Abs~seg is actually a fictitious segment, being in 
reality an entry in the descriptor segment indicating 
an unpaged segment, which is used to point to page 
tables when the latter must be manipulated; see BL.12. 
It is not assigned core space.) 

Call initcm. Available-core information is extracted from 
the Major Module Configuration Table (see BL.S) and passed to 
Core Control via a call to initcm (see BG.6.00). 

Call £Qrg for supervisor segments. The segment numbers 
of the first and last supervisor segments already read 
in are extracted from the SLT and used as the limits 
of a loop containing a call to~ (see below). 

Call core for initialization segments. The segment number 
of the-first and last initialization segments already 
read in are extracted from the SLT and used as the 
limits of a loop containing a call to~ (see below). 

Return. 



,/ 
f 

/ 

" 
MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BL.6.03 PAGE 3 

The single argument of the core subroutine is a segment 
number; call it n. The logic of~ is as follows: 

1 • 

2. 

3. 

Examine SOW. If n~s segment descriptor word is 
marked directed fault, core returns, thus ignoring 
the nth descriptor segmenr-entry. If the descriptor 
is illegal (>4), call panic (see BL.S.OO). 

Get SLT information. The status information for n 
(wired/unwired), hyperpage size, and descriptor 
segment switch are extracted from the SLT, to be 
furnished as arguments in the following call to 
Core Control. 

Call assign_at_loc. The information gathered in 
step 2 is passed to Core Control via calls to assign_at_loc 
(see BG.6.00) for each hyperpage of n, and for the 
remaining fractional hyperpage, if any. (The point 
at issue here is that asslgn_at_loc accepts assignments 
for an arbitrary number of contiguous blocks at a single 
time, so that each call but the last can be for a 
hyperpage~s worth of blocks.) Note that unpaged segments 
are disposed of in a single call to assign_at_loc. 
Also, each page table word processed is checked for 
legality in the same fashion as sow~s are (see step 1). 



MULTICS SYSTEM-PROGRAMMERS ... ~NUAL SECTION BL.6.03 

Figure 1. 

No 

Get pointers 

Call 
initcm 

Loop for 
supervisor 
segments 

Call 
Core 

Loop for 
initializatio 

segments 

Call 
Core 

Figure 2. 

Get status 
from SLT 

Loop for 
PTWs 

Call 
assign_at_loc 

\ 

PAGE 4 

Call 
ssign_at_loc 


