
-
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.7.02 PAGE 1

Published: 02/16/68
(Supersedes: BL.7.02, 04/04/67)

Identification

Multics pre-linker
pre_l ink_2
N • I • Mo r r is ·

Purpose

During Multics initialization and process creation, segments
must be pre-linked. At these times, the operating environment
will not support a dynamic linker. It is the purpose
of pre_link_2 to scan through a given linkage section,
"snapping" as many links as possible. pre_link_2 consists
of two procedures, scan_linkage and force_link. scan_linkage
searches through a given linkage section for linkage pairs
and ca 11 s force_li nk to "snap" a given 1 ink pair. pre_l i nk_2
is called by pre_link~1 during Multics initialization
(see Section BL.7.01) and by pre_linker_driver during
process creation (see Section BJ.9.02). Since it must
be able to be called in an environment in which no links
have been made, scan linkage may be entered by calling
<pre_link_2>IO, and force_link may be entered by calling
<pre_link_2>11. force_link is also called by estbl_ptr
(see Section BJ.9.08) during process creation.

scan 1 i nkage

scan_linkage is as follows:

call scan_linkage (lp, table_manager);

lp is a pointer to the beginning .of the linkage section to
be scanned.

table_manager is a pointer to a procedure which will return
a pointer to a segment and its linkage section, given
a segment nameo In Multics initialization, it is a pointer
to slt_manager~get_text_link_ptr (see Section BL.2.02),
and in process creation, it is a pointer to the pre-linker
driver table manager (see Section BJ.9.02). The table
manager is called in the following manner:

call table_manager (segment_name, text_pointer,
linkage_pointer, error_sw1tch);

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.7.02 PAGE 2

scan_linkage operates in the following steps:

1 •

2.

3.

4.

s.

6.

Compute length of linkage section from word 6 of the
linkage header (see Section 80.7.01 for linkage section
formats).

Examine each word pair, be~inning at location 10(8) of
the linka~e section. If b1ts 18-29 of the first word
of the pa1r are zero and bits 30-35 contain a fault
tag 2 (46(8)), then the words probably constitute
a linkage pair. Otherwise, go to Step 5.

Validate the linkage pair by testing the back pointer
to the header. If the address of the first word of
the pair plus the offset of the word pair from the
linkage section header is equal to zero, then the
pair is a valid linkage pair. Otherwise, go to Step 5.

Call force_link to 11 snap11 the link.

If offset of next word pair is less than length of
linkage section, go to Step 2 and process next word
pair.

Return.

force link .

force_link operates in a manner similar to the Multics
dynamic linker (see Section 80.7.04). It does not, however,
process type 2 links (ITB) or handle traps before definition.
force_link is called as follows:

call force_link (link_pair_ptr, table_manager, trap_switch);

1i nk_pai r _pt r is a pointer to the linkage pair to be linked.

table_manager is the same argument as passed to scan_linkage.

trap_switch is 1 if force_link is expected to make a trap
call if it detects a trap_before_link while evaluating
the linkage pair. If trap_switch is 0, a trap-before-link
will be ignored. When force link is called recursively
by dbi, the data base initiaTizer (see Section BL.7.03),
trap_switch wi 11 always be 0 in order to prevent infinite
recursion.

.....

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.7.02 PAGE 3

If force link is unable to make a link (i.e., if the segment
or symbol to which the link pair points is undefined),
force link will take no error action. It wi 11 simply
return. Its caller can test for success in 11 snapping"
the link by examining the tag of the first word of the
link pair. If it is still a fault tag 2, force_link was
unsuccessful.

force_link performs the following steps in execution:

1o Pick up the tag and external expression word pointer
from the second word of the link pair.

2. Using the back_pointer to the linkage header and
the definitions pointer, generate pointers to the
linkage header and the definitions.

3. Pick up the external expression value and the type
pointer from the external expression word.

4. Examine the trap pointer in the type pair block.
If zero, proceed to Step 6. Test trap_switch.
If zero, proceed to Step 6.

5. Process trap before linking:

a. Using the arg pointer in the trap word, call
force_link recursively to generate a link to the
EPL-compiled argument list (see Section BN.7.08).

b. Using the call pointer in the trap word, call
force_link recursively to generate a link to the
trap procedure (see Section BL.7.03).

c. Call the trap procedure using the links just
generated.

6. Using the linkage type from the type pair block,
get pointers to the text and H nkage pointed to
by the link. If the link is type 3 or type 4,
this is done by generating a specifier and dope
vector for the segment name pointed to by seg
pointer in the type pair block and calling the
table manager routine to search for the segment name.
If the segment is not found, return. If the link
is a type 1 or type 5, force_link already has the
linkage section pointer, and the text segment
number can be found in word 7 of the linkage header.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BL.7.02 PAGE 4

7. If a type 4 or 5 link, search the definitions of the
external segment for the symbol pointed to by sym
pointer in the type pair block. Extract the value
and type from the external definition. If the symbol
is not found, return.

8. Using the values and pointers gene~ated in the previous
steps, make a pointer and replace the original linkage
fault pair with the pointer.

9. Returno

