
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

A primer on EPL-compi led object code
D. Bo Wagner ·

Epigraph

SECTION BN.1D.OO PAGE 1

Puplished: 12/07/67

Thus the unfacts. did we possess them. are too imprecisely
few to warrant our certitude. the evidencegivers by legpoll
too untrustworthily irreperible where his adjugers are
semmingly freak threes but his judicandees plainly minus
twos. Nevertheless Madam's Toshowus waxes largely more
lifeliked (entrance. one kudos~ exits. free) and our
notional gullery is now completely complacent. an exegious ·
monument. aerily perenniouso

- James Joyce

Purpose

The BNo1D Sections are a kind of overview to the various
other BN Sections concerning the code produced by EPL.
The approach is more tutorial than precise. and it wi 11
be noticed that in some cases the code compiled by EPL
is considerably more bizarre than indicated here. This
is a natural consequence of the desire (absent in other
BN Sections) to avoid frightening the reader away.

Discussion

The present Sect ion describes in generc;1l terms the over a 11
structure of an EPL-compiled program and then points out
some of the 11 hot spots" - places in which the code produced
by EPL is more wretched than usual or where clever programmer
decisions can make a great difference in the efficiency
of the compiled code. .

In Section BN.9.00 J. F. Gimpel makes an important point:

It would be unwise to base the discussion on the
idiosynchrosies of any particular version of the .
compiler. Not only would the discussion be obsolete
with the introduction of a new compiler. but the
programs written using that advice would be sprinkled
with obsolete glitches. ·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION ·BN.10.00 PAGE 2

This is very good advice, which I concur with more than
the rest of this SeCtion would.le(ld one to believe. But
it must be balanced against the necessity of making Multics
work. Since it does riot appear that there wi 11 be· any
compiler better than EPL for at least a year. it wi 11 .
be necessary to keep EPL's bad habits in mind while writing
programs.

The Structur@ of an EPL Qijtcct .Program

The diagr(im of figure 1 shows s.ome of the pieces of .an
EPL object program and some of the interconnections between
them. We have ignored ~-b. locks, interna 1 procedures,.
and .Q!!. statements. A sQTTd"arrow represents any transfer
of control which can be considered a call and has a guaranteed
return. A broken arrow represents an ordinary transfer
of control,. a broken non-arrow represents a data reference,.
and a zap represents a call caused by a fault.

The pieces of the program wi 11 not necessarily be found
in the order shewn irt the diagrqm. Each piece is bui 1 t
up in little chunks using the "multiple location counters"
feature of EPLBSA (see BN.B.01), and where EPLBSA puts
each piece is its own busines~ •. Below we will briefly
describe each piece of the program. Concrete examples
of what we are talking about.wlll be found in BN.10.01
and BN.1D.02.

The eroloque contains flnY code which should be executed
before the main sequence of code. Among the jobs assigned
to the prologue are:

1 •

2.

3.

4.

s.

Evaluating the extents of adjustable automatlc items and
allocating storage for them.

Establishing initial values for items declared automatic
initial. ' · . · ·

Setting up specifiers for automstic and based items which
require them.

Calling condition to establish the epilogue. if necessary.
(Epilogues are discussed below.) .

Many miscellaneous things: for example performing the
verify option if ft was specified.

A discussion of
be of interest.
of a subroutine
called at every

the prologue appears in BN.9~02
In EPL the prologue always has

called with a tsxO instruction.
entry point to the procedure.

and may
the form
It is

.....

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.00 PAGE 3

A program may use one or several different pie•:es of static
storage which must be grown at run t.ime. Each external
static variable or aggregate has a separ~te block of grown
storage, and in addition the program needs a block of
storage to hold all internal static storage declared in
the program and .111 specifiers which happen to be needed
for any static data. Growing of storage at run-time is
done through use of the library procedure datmk_ in conjunction
with the 11 trap-before-link" feature of the linker. See
BP.4.01 for more detail on the operation of datmk • Datmk_
gains control on fir~t reference to a needed block of
static storage 1 grows the storage, and if necessary passes
control to a p1ece-of the procedure (referred to in the
diagram as the stttic initiali~fr) which initializes the
storage. There are two jobs t s procedure might have:

1. Establishing initial values for items declared static
initial. ·

2. Setting up specifiers for static data which need them.
These specifiers are all kept in the same grown storage
block with internal static variables, and initialized
with them. · .

6Jit. Much of what is said in BN.9.02 about the prologue also
f applies to the static lnitia1izer~. . ·

The epilogue contains the cleanup operations which must
be performed before the procedure becomes inactive. The
two jobs of the epilogue are;

1. Releasing the storage occupied by automatic varying
strings. (See.BP.2.01.) ·

2. Reverting So.-uni ts, (See BN .5 .02.) .

See BP.3.00 (.Q2! BN.5.01) for a fuller discussion of epilogues.

There are two different ways in which the-epilogue may
be invoked: at the return statement, or in the course
of a non-local sg !Q. (The diagram shows that our procedure
called some·other procedure which called the unwinder
to execute a non-·loca 1 gg 1Q to a dynamic ancestor of
our procedure.) In order to make it possible for the
unwinder to invoke the epilogue, the prologue includes
a call to the system procedure conditi¥n which keeps a
stack of ePilogues. The epilogue comp led by EPL is very
cleverly worked out so that it may be either called or
transferred to.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.00 PAGE 4

The compiled code us<~$ various special -{and sometimes
very peculiar) subro~1tines compiled in ~t the end of the
procedure. The diagram shows, for example, the call to
.sv which is a singlE'! instance of the standard Multics
save sequence. Others perform the mod function, do subscripting,
calculate shifts, convert from floating to fixed, and -
on and on. Section BN.3.02 is useful in deciphering what
these subroutines do, but unfortunately the version dated
2/24/67 is at this writing a bit out of date, and.many
subroutines compiled by EPL are not qescribed there.

Evaluating ill Object .Code

It cannot be stressed too strongly that EPL is so complicated
that lt is not possible to be sure ahead of time of the
consequences of various courses of action. If a programmer
is seriously fnterested in optimizing object code by source
program decisions, he must be prepared to iterate: make
a change, see the results, change again (or change back) ••••

Fu_rthermore, and most important, ' body count te 11 s very 1i tt le
at>out whether you arT winning or osing. · Some instruct. ons
are more strategical y placed than others~ Looking at ·
the size of a compiled program is certainly easy, but
the ease of counting instructions and the difficulty of
making timing tests has led people to assume a proportionality
between size and speed which simply does not exist. Section
BN.10,01 shows two pro~rqms which do the same thing and
are roughly the same size: one is four times faster than
the other. -

An easy way to do tim!ng tests in 6.36 ls to use the 645
interval timer. This is a 24-bit hardware register which
counts (depending on the setting of a switch on ·the processor
panel) either memory references or ticks of an internal
64 kc. clock. A memory reference is approximately 1 _
microsecond, and a clock tick is approximately 15 microseconds.
At this writing, the switch is always set for clock ticks,
but this is subject to change~

The interval timer is referenced using the· machine instruction
ill· A procedure to get the- timer reading from an EPL
program is being placed on the Multics Segment Library.
To use it:

dd timer external entry returns (fixed-bin (24));
•••• = timer;

-- -

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.00 PAGE 5

There is one prol:>lem with using the interval timer:
while the program is runni~, GECOS may steal some time
in order to print on-line l1stings. Thus ther~ may be
considerable errc)r in the timings taken usin~ this method.
If this turns out to be a problem, the 645 s1mulator wi 11
help. (See BE.5.02 for how to use ito Note that the
simulated interval timer always counts memory referenceso)
Unfortunately the simulator is desperately slow, taking
about 30 minutes to simulate 1 secondo A few simulator
jobs submitted in a day can completely wreck turn-around
time for everyone using ·the 645.

Hot Spots: Long 1nd Short Strings

Given the brief dJscussion of an EPL compilation above,
we now discuss a -few of the places where EPL-compiled
code is especially inefficient, or where minor programmer
decisions can have major effects. The first qnd perhaps
most important of these 11 hot spots11 concerns string manipulation.
Note that everything said below ~pplies equally to bit-strings
and character-strings.

Non-varying non-adjustable strings with length known and
less than or equal to 36 bits are called short strings.
Others,. including all varying strings, are called long
strings. · ·

Nearly all operations on long strings are performed through
calls to the run-time routines described in BN.7 .09.
Not only are these routines very general and slow, but
their use means that the strings 11eed specifiers and dope,
which makes the prologue bigger. Furthermore varying
strings (as presently implemented) must be initialized
and terminated through calls to the library procedures ·
varst~$zero and varst_$clear, described in BN.7.02. Thus
varying strings place an additional burden on the efficiency
of the program •

. Operations on short strings are normally performed in-1 ine
and tend to be much faster than operations on long strings
(perhaps by a factor·of 15). Whenever possible progra~s
which manipulate strings should be designed to use short
strings, although of course it is clear this is not always
possible.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.00 PAGE 6

Section BN.9.01 discusses some of the efficiency cc,nsiderations
involved in using shc•rt strings, especially within aggregates.
One important considE!ration mentioned there is that a
short string parameter is qlfficult to access (perhaps
10 times slower than an aligned automatic string) so that
a program which accesses such a parameter more than once
should make a copy of it instead. To make it easier for
the programmer to detect cases like this, the EPL compiler
places in the EPLBSA file the comment "IDIOTIC" next to
every access to a short bit-string ·parameter (as well
as in some other places: see below).

Section BN.10.01 contains an extended example of the kinds
of things that happen in EPL string manipulation.

J:fQ.l Spots: Planning 2f. Aggregates

The planning of aggregates is one of the very tricky and
yet very important hot spots of EPL. Sections BN.9.01
and BN.9.01A are both quite readable and devoted primarily
to this subject, and we canno.t possibly say much here
except to recall some of tne major conclusions of those
Sections: ·

1 •

2.

3.

Aligned aggregates are much f~ster to access than packed
ones, so much so that the prograrrvner has almost no reason
for. using packed aggregates.

Arrays with one-word elements are easier to access by close
to a factor of 10 over .near·ly equivalent arrays which have
other element sizes.

Some rules are given Jn SN.9.01 showing how adjustable
aggregates should be laid out. Usually a.properly
Gimpel ized structure wf.ll have its elements laid out in
the following order:

a.

b.
c.
d.

Pointers, labels, and double-precision arithmetic
variables.
All other non-adJustable items. ·
An array with only the first upper bound adjustable.
All otner adjustable items.

4. Two fairly complicated concepts are defined in BN.9.01,
synchronous and idiotic. To help the programmer find
instances of certain kinds of inefficiencies, the EPL
campi 1 er places the comments "NOT SYNCHRONOUS" and
11 IDIOTlC' 1 in the EPLSSA code to mark accesses to aggregate
elements which wquld be more efficient ·if the aggregate were
planned more carefully.

.-
--

-
MUL TICS SYSTEM-PROGRAMMERS .. MANUAL SECTION BN.10.00 PAGE 7

Some examples of the planning of aggregates will be found
in BN.10.01 and 8N.1D.02. Another example is the Active
Proc~ss Table de~cribed in BJ.1.D1. BJ.1.01 contains ·
a rather good discussion of the considerations that went
into the design (If the APT.

HQ1 ?pots: Epilogues

An epilogue is needed in every program which contains
an .QD.:.statement or an automatic varying string. ·In such
a program there must be at least two special calls, one
in the prologue to establish the epilogue for the unwinder,
and one in the epilogue· itself to get rid of the unwinder .. s
record of the epilogue. So ~f possible varying strings
should be made static and .QD.-statements should be eschewed.

To determine quickly whether a given program uses an ep·i logue
check toward the end of the EPLSBA listing for the symbols
CLEAN.UP, CLEAN.P, and BEGIN.E.

Occasionally the programmer will be mystified by the occurrence
. of an epilogue in a program which. has no on-statements
and no declarations of varying strings. The curious epilogue
in such a case will undoubtedly be because of a varying
string temporary ~~enerated by the compiler. Such temporaries
can be tracked down by looking for references to <free_>l[free_]
in the code. AftHr the offending statement is found,
the programmer can fiddle and try to get rid of the varying
temporary.

Hot Spot~= fsn~y Do-Statements

Imagine the worst code possibl.e for the statement=

do 1 = 2,3#5#7,11,13,17,19,23,29,31J

The reader who has never tried a statement of this form
will undoubtedly have guessed low: in a test EPL compiled
3 1/2 pages of EPLBSA code for this statement.

The word: eschew~ statements with multiple specifications.

However EPL special-cases the commonly used forms of the
9Q statement so in general it is not necessary to be too
concerned about them. ·

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BNn10.00 PAGE 8

Hot Spots: ~ Bug .L!:!. ~ .!f Statement

A bug which has exis~ed in EPL since its earliest days
causes .!f's to be much slower than necessary in some cases.
Consider the statements:

del fizzy external entry returns (bit(1));
if fizzy then go to indigestion;

The bug in EPL causes fiz~y to be called twice, which is very sad.

In general if the major operator in the expression is
not a relation then the entire expression is comoiled
twice. There is some sign that this nonsensica1l6ug may
go away in the next two months or so.

Hot Spots: Miscellaneous

A few additional problem areas are:

1 •

2.

3.

Begin - blocks cost something and should not be used without
a reasonably reasonable reason. Part of the cost lies in the
fact that accesses in the block t6 automatic data in contain
ing block take an extra instruction each. See also BN.9.01.

Adjustable data is implemented wretchedly. Unfortunately
where it is used there is seldom a substitute. However
see BN.10.02 for some hopeful· suggestions.

A use of the sub§tr built-in function usually requires two
calls to run-time routines. (See BN.7 .OS.) This wi 11

·eventually change ,but not for quite a w_hile. In the
meantime, for those who cannot wait, various fancy
mismatched declarations can often be used to speed things
up. See BN.10.01 for one example of this kind of
g~me-playing. (However note that the use of. mismatched
declarations and other implementation-dependent constructions
is a Bad Thing: see BN.10.01).

!!!Q.Q.-JjQ.l Spots

It is not generally necessary to worry about the following
statements. This is not to say that they are all terribly
efficientc but that if they are inefficient they are inherently
so and on1y a change in the philosophy of the program
could possibly improve the situation.

..{ - -

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.10.00 PAGE 9

all ocate

call

do (except as mentioned above)

entry

free

go to

el~e

on

procedure

return

revert

signal

For anything not mentioned here it wquld be wise to take
a glance at the EPLBSA code produced.

MUL TICS SYSTEM- PROGRA.MMERS' MANUAL

. ' The Program

entry point !-+tsx 0 .sv

tsx 0

call~ st.atement call-----.ji--+-_,. __ _

entry point

reference to

a static

I
variable

return

statement

static

initializer

ttox 0 .sv ~

!
I tsx 0

i

lda. ·- rz,

' .
tra • • .. "'-• • • • 1

' ' 1---------~--·· t ' I
I

L.. I
~ ' I

' ' l
... I

~--'

I

:

'

epilogue call ~eversion~------+---------~

retum

miscellaneous

subroutines 1

called from

everywhere

linkage
definition•

(irrelevant to
this discussion)

... - ~· ---·w, __ _,
~-

~~ ... _..,_ -·--·-··

------~---·-------- -- ---··--·----··-··

-~ - -. ' ..::!'

SECTION BN.10.00 PAGE 10

' •
1

' I
f•

f
..

r
I ~

I ,

I
~

.

I ~

I

I·.

I

'

The World

reversion

Anybody

'

linker

I
datmk_

Figure 1.

condition

I
I

··----o::
_ ..

I

' I

unwinder

An EPL object

program's view

of itself and

the world]

. --- --------· ---------- - --- --- -

