
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP .3.00 PAGE 1

Published: 06/16/67

Identification

Implementation of Blocks in PL/1
D. B. Wagner

Purpose

The PL/1 definition of a block is, '' ••• a collection of
statements that defines the program region--or scope-
throu~hout which an identifier is used as a name. It
also 1s used for control purpose~· (IBM form C28-6751-3,
p. 19, which should be seen for a detailed discussion
of blocks from the point of view of the language). A
block may be an external procedure, an internal procedure,
or a begin block. The blocK structure of a program affects
the organizat1on of automatic storage (including calculation
of adjustable extents and the initial attribute) and the
actions of the Qn, reyert, and SQ 1Q statements.

According to the whim of the compiler, each generation
of each block in a program may have its own stack frame,
or the relation between blocks and stack frames may be
more complicated. The present section discusses the various
strategies which may be used to implement block-structuring,
the mechanism for accessing automatic variables of containing
blocks, and the mechanism for dealing with the 11 non-local
SQ !£11 •

External Procedures

Ignoring the fact that segments may be bound together
(for which see The Binder, MSPM BX.14.01) external procedures
correspond one-for-one w1th procedure segments. Every
PL/I program segment is an external procedure with one
or more external entries. The first label on the first
procedure statement in the program segment is considered
the 11 procedure name11 and the 11 primary entry point"; This
fact is noted in the Segment Symbol Table for the compiled
segment and is otherwise ignored.

An external entry is of course called using the standard
call-save-return sequences described in 80.7.02-.03.
An entry beta in segment alpha is referenced using the
notation

alpha$beta

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP.3.00 PAGE 2

and the simple name beta with no"$'' refers to

beta$beta

Internal Procedures

An internal procedure is called using the standard call-save
return sequences with the argument list modified by attaching
to it the value of the stack pointer for the embracing
block. This modification is described in BD.7.02. This
implementation is mandatory for internal procedures that
may be called from another segment, but an optimizing
compiler may wish to use a special implementation for
internal procedures which are not involved in intersegment
communication. One possible special implementation is
given later in the present Section. As an example consider
the statements:

a: begin;
b: proc;

•••

A call to Q (no matter whence) includes in the argument
list the stack pointer for the generation of storage for
2. (Of course 2 must be active at the time of the call
to b.) This stack pointer is used by Q for accessing
variables in embracing blocks.

This situation is complicated by the fact that an internal
entry may be passed as an argument, and thus may be called
from procedures which have no way of knowing the stack
level of its embracing block or even whether it is internal
or external. To solve this problem, whenever an entry
is passed as an argument, the object passed is a six-word
block (identical to a label) as follows:

1- -· - - - - - - - - - - - ·- - -

ITS to entry

ITS giving stack pointer (for
embracing block if internal;
dummy if external)

2 spare words

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BP.3.00 PAGE 3

Whenever any entry parameter is called, the caller includes
the stack pointer value from the entry parameter in the
same way as it would be passed in a call to an internal
procedure. External procedures ignore this extra, while
internal procedures use it to access variables in containing
blocks without caring about its source.

Begin-blocks

It is reasonably clear why programmers use external and
internal procedures, but it might be worthwhile to run
through the reasons why a programmer might choose to use
begin-blocks:

1 •

2.

3.

To keep identifiers used in different parts of a
program from becoming confused.

To control when automatic adjustable strings and
arrays have their extents calculated. ·

To control the execution of prologue and epilogue code
for rarely entered sections of a program.

In addition the liberal use of begin-blocks in a program
may provide valuable information to a smart compiler, since
by definition they can be entered only at the top.

Begin-blocks: A simple strategy

To avoid complications in a simple compiler, a begin-block
can be treated exactly like an internal procedure, so
that the sequence

a: begin;
• • •
end a;

is compiled to be equivalent to

a: ca 11 PJ

P: proc;
• • •
end P;

The only problem which must be solved in a compiler using
this strategy is that by PL/1 rules a return statement
inside a belin-block must terminate the closest containing
procedure b ock and not just the begin-block.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP.3.00 PAGE 4

A discussion of other strategies which might be used to
reduce the amount of code the above strategy requires is
discussed later in this Section.

Prologues, Epilogues, and the Non-Local Go To

Each block (external or internal) begins with a proloTue
and ends with an epilogue. The prologue performs var ous
initialization tasks such as setting up the display~ creating
specifiers and (sometimes) dope for automatic variables~
etc. It is not terribly important in this discussion.

The epilogue performs a number of tasks which must be
done when a block is terminated. These include:

1)
2)

3)

Reverting on-conditions
Freeing the storage occupied by
automatic varying strings
Popping up the epilogue stack

The problem with epilogues is shown by the following series
of statements:

a: begin;
q: • • •
b: begin;

• • •
C: begin;

• • •
go to q;
end CJ
end b;
end a• ~

The statement "go to c::f' is a non-local go to: when it
is executed, the stack level must be brought down to the
level of sJ furthermore~ the epilogues for both of the
blocks £ and Q must be performed.

For the benefit of "abnormal returns" such as PL/I's non-local
gQ to, Multics provides the unwinder. See 80.9.05 for
details: it keeps a stack of terminating procedures corresponding
to frames of the call stack. When a Multics procedure
wishes to make a transfer of control which involves ••popping"
the call stack~ it calls the unwinder, which executes
the terminating procedure for every stack frame which
must be violently terminated.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP.3.00 PAGE 5

Thus in PL/I any SQ to statement which is not known to be
local is compiled as~

call unwinder (1);

where 1 is a label variable (see BP.2.01) which contains
the transfer point and the stack level associated with it.

For any block which needs an epilogue the epilogue is
compiled as a standard internal procedure. Then in the
prologue for this block code equivalent to the following
is compiled:

call condition("cleanup". P)J

It may come as a surprise to some readers that the condition
primitive is used for this purpose. This is the way the
unwinder works: see BD.9.05.

Begin-blocks= other strategies

The subject of precisely where the automatic storage for
a begin-block is kept. and the relationship between blocks
and stack frames. is a subject for discussion and possibly
even for optimization decisions in the compiler. The
extremes for consideration are:

1. As discussed above [and currently implemented in EPL.
see BN.5.D1]. a ~edin-block may be considered to be
simply a funny k n of internal procedure. Then there
is a one-to-one correspondence between blocks and
stack frames.

2. Begin-blocks can have almost nothing to do with stack
frames: the automatic storage for the block can be
kept in the stack frame for the most closely containing
procedure block.

The first above is probably easier on the compiler. since
it means a minimum of special cases to check for~ It
comes close to best-possible use of stack storage but
requires quite a bit of extra code for communication with
containing blocks (in EPL one instruction for each access
to an automatic variable in a containing block. plus the
code at block entry to create a new stack frame and set
up the "display": see BN.6.03 and BN.6.04).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 8P.3.00 PAGE 6

The second strategy above requires no special code for
communicating with containin~ blocks. Its use of stack
storage is normally less eff1cient than in the first case,
but this inefficiency can be kept small if the compiler
is reasonably clever about overlapping the storage used
by parallel blocks.

The only problem with this second strategy concerns the
non-local gg to. The unwinder works only in terms of
stack frames;-rf a begin-block does not have a stack frame
of its own there is no way of telling the unwinder precisely
under what circumstances its terminating procedure should
be invoked. There appears to be a relatively straightforward
way of handling this problem using a collection of switches
telling which blocks using a given stack frame are currently
active. At every point which might be the target of a
non-local gQ !Q, a test can then be made to decide whether
any descendants must be terminated before processing continues.
Working out the details of how to do this may not turn
out to be worth the trouble.

A simple way to avoid this problem is to make some begin-blocks
work one way and some the other: Any begin-block which
needs an epilogue has a stack frame of its own, and any
other begil-block uses the same stack frame as its containing
block. Th s is the strategy recommended for PL/I and
PL/I-like compilers in Multics.

Internal Procedures: s special-case strategy

If an internal procedure is not involved in intersegment
communication (i.e., is never passed as an argument to
an external procedure), its calling sequence need not
follow the system standard given in 80.7.02. The only
requirement is that special calling sequences be documented
and that the Segment Symbol Table output by the compiler
be extended to include what calling sequence the procedure
uses. Specification of the calling sequence suggested
below is included in the standard PL/I Segment Symbol
Table described in 80.1.02.

If all the calls to a given internal procedure come from
its immediately containing block (this is probably true
of 75 percent of all internal procedures) the procedure
can be treated roughly like a begin-block without a stack
frame. The call suggested is as follows: make up a standard
argument list as in 80.7.02 but do not bother making the
header which tells the number of arguments (let it be
garbage). Then the call is simply

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BP.3.00 PAGE 7

eapap argl i st
tsx7 proc

where Troc is the procedure. This saves six instructions
per ca 1. Savings in the procedure itself depend upon
strategies in other departmentsJ in EPL the procedure
would look 1i ke:

stpap
stx7
• • •

splsrg
splru

ldx7 sp lr.tl
tra 0,7

this means the minimum savings would be: one instruction
per reference to the containing block, two instructions
in prologue and epilogue, and sixteen instructions in
subroutines (execution saved only). The saving of execution
time can be as much as twice that mentioned here depending
on block leve 1.

