
TO:
FROM:
DATE:
SUBJ:

Multics Distribution
Carla Marceau
December 28# 1967
Overseer# 80.3.01

The attached minor revision brings the implementation
of the overseer up to date. Some declarations are changed#
quit and completion events are handled by event calls
to entries of the overseer# the name of the overseer data
base is changed to working process table and is readable
in ring 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ .3.01 PAGE 1

Published: 12/28/67
(Supersedes: BQ.3.01~ 07/11/67)

Identification

The overseer procedure
C. Marceau~ P. Belmont

Purpose

The overseer procedure is the soul (a materialistic generation
might call it the skeleton) of the Overseer Process.
By calls to appropriate subroutines~ the overseer procedure
carries out the essential responsibilities of the Overseer
Process, which are:

a) to initialize the process-group for the user;

b) to set up the appropriate subsystem for the user;

c) to respond to signals initiated by the user (as when
the user depresses the break key at his interactive
console);

d) to respond to system-initiated signals (e.g.~ automatic
·logout).

Discussion

The Overseer Process is created by a User Control Process
(see BQ.2.03) after the User Control Process has logged
the user in. After initialization the Overseer procedure
executes in the Overseer Process. Fig. 1 illustrates
the User Control Process and the Overseer.

Alternatively, the Overseer Process may be created by
the absentee monitor process when a user has requested
an absentee job (see 80.2.04).

Each user-process-group is either interactive or absentee.
An interactive process-group is one which is created by
a User Control Process because of a dial-up at a typewriter
console. An absentee process-group is one which is created
by an Absentee Monitor Process. The procedure which creates
a new process-group decides whether the new process-group
is to be interactive or absentee~ and communicates its
decision to the Process-group Ranker and to the overseer
of the new process-group. The distinction between interactive
and absentee lies entirely in the way these modules view
the process-group. Namely~ the Process-group Ranker suspends

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.3.01 PAGE 2

absentee process-groups# when system load is heavy# without
actually logging them out. (A suspended process-group
is not allowed to run but is reanimated by the Process-group
Ranker without user intervention when system load lightens.
See BQ.S.01 for a discussion of the suspension of process
groups.) The overseer procedure attaches the user~s console
and enables the console 11 quit button" if it is told that
the process-group is interactive; for an absentee process
group the overseer does not attach a user~s console.
However# there is nothing to stop an absentee process-group
from attaching a console (if it could find a free console)
and using it to communicate with a user - just as an absentee
process can attach tapes# etc. (An attempt to detach
an interactive user~s console# a potentially catastrophic
action since the user would have no means of reestablishing
contact with the now-isolated process-group# will be rejected#
viz.# cause an error return. This is because the overseer
executes in the administrative ring when attaching the
console# and no user ring procedure may thereafter detach
the console.)

Calling the Overseer

The overseer procedure has no arguments in the ordinary
sense# since it is invoked by another process. However#
certain information must be communicated to the overseer
by its caller. The overseer~s caller (User Control Process
or Absentee Monitor Process) plac~s the necessary information
in a segment in the Overseer~s process directory# which
is accessible to both the Overseer Process and the calling
process. The information is arranged in a structure:

del 1 args#

2 ca 11 e r b i t (3 6) #
2 auto_logout_chn

bit(70)#

2 interactive bit (1)#

2 name char (24)#
2 projid char (24)#
2 suspend_chn bit {70)#

2 suspend response_chn
bit (70)#

/*id of calling process*/
/*returned by overseer# the name

of an event channel over which
t~e caller can· signal an automatic
logout*/

I* =1 if process-group is inter-
active*/

/*user name*/
/*project id of user*/
/*event channel over which

absentee monitor can si~nal
suspension# if interact1ve=O*/

/*event channel over which
overseer should signal after
it has received and processed
a suspend event*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.01 PAGE 3

2 ready bit (70),

2 logout bit (70)~

/*event channel over which
overseer should signal to
caller when it is ready to
receive automatic logout
or suspend signals*/

/*event channel over which
overseer should signal
after the user logs out
or it has finished
responding to automatic
logout*/

2 comm_info_size fixed bin (17),
/*number of significant

characters in args.comm info*/
2 comm_info char (511), /*communication info, =registry

file name of user's console if
interactive=1, else= path
name of a segment in which
further info can be found*/

2 wdir_size fixed bin (17),
/*number of significant

2 wdir char (511);
characters in args.wdir_size*/

/*pathname of working directory,
= 1111 if user's defau 1 t is to
be used*/

If the process-group is interactive, args.comm_info is
the registry file name of the interactive device (the
registry file name uniquely identifies the device- see
BT.O.OO). If the process-group is absentee, ar~s.comm_info
is the path name of a segment in which further 1nformation
may be found. For example, the Multics Command Subsystem
requires as absentee information tne names of segments
to be used as input source and destination of output from
the commands (i.e., segments to which the 1/0 streamnames
user_input and user_output will be attached).

The elements args.wdir specifies a working directory for
the user if the user's default should not be used (see
be low).

Subsystems

The overseer has the job of initiating a particular subsystem
as the user's interface with Multics after he has logged
in. The subsystem determines how the user's input to
his process group is interpreted. For example, in the
Multics command subsystem the listener procedure (see
BX.2.02) reads the first line that the user types after
logging in, then calls the Multics Shell (see BX.2.00)

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BQ .3.01 PAGE 4

to interpret the line as a call to a Multics command or
user procedure. In another conceivable subsystem some
listening procedure might read all user input lines as
requests concerning airline reservations.

The Multics command subsystem provides a general interface
for the ~eneral-purpose user; other subsystems can serve
the spec1al-purpose or the restricted user.

The interface of a subsystem with the overseer procedure
consists of three elements:

1)

2)

3)

a procedure. termed the login responder. which the
overseer causes to be executed after initializing
the process group (the Command Subsystem's listener
is an example of a login responder);

a procedure. termed the quit responder. which the·overseer
causes to be executed after a quit event (when the user
depresses the quit button at his console);

a one-bit automatic lolout ~ flag which indicates
whether. at automatic ogout. the overseer procedure
should save the status of processes in the process-group
or not (see below for a discussion of saving processes
in the process group).

These three elements are contained in the PLII structure.
subsystem. which is located. in an Overseer data base:

del 1 subsystem ctl (p).

2 login_responder char (32).

li(path name of the procedure *I

2 quit_responder char (32).

I* path name of the procedure *I

2 auto_logout_save bit (1);

the subsystem structure is located in a segment in the
Overseer's process directory. The overseer creates and
fills in the subsystem structure se~ment immediately after
login. using information contained 1n the user profile
(see BQ.4.03). The subsystem structure can be modified
from the administrative ring.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ • 3. 01 PAGE 5

The overseer obtains a subsystem for the user in the following
way:

1) A segment in the user's profile (see BQ.4.03 on user
profile directories) specifies what subsystem the user
will operate in. This se~ment can be written in only
by the user's project adm1nistrator, and specifies both
a subsystem and whether the subsystem is mandatory for
the user or a default.

2) If the project administrator does not enforce a subsystem
on the user, the user may specify his own in another
segment in his user profile.

If the project administrator enforces a subsystem on the
user, the overseer fills in the subsystem structure with
the specifications of the enforced subsystem. If the
project administrator does not enforce a subsystem, the
overseer looks to see if the user has specified a subsystem~
and if so, uses his specification. If the user has not
specified a subsystem, the overseer uses the project
specified default.

After control has passed to the subsystem (viz., to the
login responder) the login responder can change the subsystem
by modifying the Overseer's subsystem data base. For
example, suppose a project administrator's enforced subsystem
consists of an enforced identity validation pro~edure
(similar to personal passwords) followed by entry into
the Multics Command Subsystem. The project administrator
would specify as login responder the identity validation
procedure. After the procedure had verified the user's
identity, it would modify the subsystem structure (to
specify the Multics Command Subsystem) and then return
to the overseer. The overseer would call the login responder
of the Multics Command Subsystem, i.e., the Listener procedure.

Section BQ.2.06 discusses subsystems in greater detail.

The Login Responder

The subsystem's login responder executes not in the Overseer
Process, but in a Working Process created by the overseer.
Thus the Overseer Process is at all times ready and willing
to respond to user-initiated and system-initiated events
(see below). After initiating the login responder, the
Overseer Process enters the blocked state, where it remains
unti 1 either the login responder sends a ''completion••
event to the Overseer or some other event occurs which
causes the Overseer to "wake up". On receiving a ••completion••

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.01 PAGE 6

from the login responder, the overseer destroys the old
working processes, creates a new working process, and
causes the login responder to begin executing in the new
process. The events which can cause the Overseer to interrupt
the login responder are:

1)

2)

3)

4)

5)

the user issues a "quit" by depressing the break key
at his console;

the user issues a logout command;

the system informs the overseer that the user must be
1 ogged out (11 automatic" 1 ogout);

the connection to the user's interactive console is
broken (e.g., the user hangs up);

the user runs out of funds.

The Overseer process spends most of its life, after it
has started up the user's subsystem, waiting for one of
the above events to occur. The action taken by the overseer
when it not~s one of the above events is discussed below.
Here our concern is to describe the interfaces between
the overseer and the subsystem.

The Quit Responder

After stopping the process-group by quitting each working
process, the overseer procedure causes the subsystem's
quit responder to be executed in a working process. The
quit responder may operate independently of the login
responder, but close cooperation between them is possible
and usually desirable. (For example, the Multics CorfiTland
Subsystem's quit responder is an alternate entry to the
Listener, its login responder. See BX.2.02.)

Automatic Logout Save Flag

At automatic logout control passes permanently from the
user's subsystem. The overseer procedure saves the status
of the process-group if the automatic lo~out save flag
is "1"b. (Save is not implemented in in1tial Multics.)

·~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.01

Flow of Control in the Overseer Procedure

The following discussion is divided into 4 parts:

1) initializing the process-group 1

2) starting up the subsystem1

3) responding to events 1 and

4) logout.

A flow chart for the overseer may be found in figs. 2,
3 and 4.

Initializing the Process-group

The first responsibility of the overseer procedure is
to initialize the process-~roup to be able to do work
for the user. To do this 1nitialization the overseer
must:

PAGE 7

1) Create the machinery for communications between the
Overseer and the user control process. First, the
overseer creates event channels for automatic logouts
and out-of-funds events.

If the process-group
an event channel for
process~group may be
of being logged out.

I

is absentee~ the overseer creates
suspension events. An absentee
temporarily suspended instead
(See be low).

2) If the process-group is interactive~ the Overseer
attaches the user's console (See BF .1) and creates
event channels over which quits and hang_ups (See
BF.2.25) may be signalled. The console is identified
by the registry file name supplied to the Overseer
when it was created.

3.) Create and initialize the working process table:

de 1 1 wpt based (pp) 1

2 WPP b i t (1 8) 1

2 overseer_proces~_id
bit (36L

2 logout_chn bit (70) 1

/*working process table*/
/*relative ptr to most recent

entry in table 1 =0 if no
entries*/

/*overseer process id*/

/*channel over which logout
command can signal logout
to overseer from a working
process,._./

MULTICS SYSTEM-PROGRA~ERS"' Ml\NUAL SECTION BQ.3.01 PAGE 8

del

2 completion bit (70), /*channel over which working
process can signal completion
event to overseer*/

2 start bit (70),

2 hold bit (70),

2 reset bit (70),

/*channel over which working
process can signal start
event to overseer*/

/*channel over which working
process can signal hold
event to overseer*/

/*channel over which working
process can signal reset
event to overseer*/

2 wps area ((4096)); /*area in which entries for each
process are allocated*/

1 wp based (wpp).

2 forwardp bit (18).

2 backp bit (18),

2 id bit (36).
2 name char (32).
2 runout lock fixed

(17).-

/*entry in wpt, allocated in
wpt • wps .,~I

/*relative pointer to next process.
=0 for most recent entry*/

/*relative pointer to previous
process, =0 for first entry in
table*/

/*process id*/
/*symbolic name of process, if any*/

bin /*ring 1 procedures increment this
count by 1 to make themselves
unquittable. When runout_lock =0.
the overseer can quit this
process*/

2 i_am_quittable bit (70),/*channel over which working
process can signal to overseer
that it is now quittable. This
occurs when the working process
declares itself unquittable,
then finds, by checking the
quit_pending flag(wp.quit_pending)
for itself, that the overseer
process is attempting to quit it*/

2 quit_pending bit(1). /*=1 iff the overseer process is
attempting to quit the user's
working process*/

2 quit_flag bit (1), /*=1 iff this process has been
quit by stop procedure*/

2 destroy_flag bit (1); /*=1 iff this process has been
marked for destruction by stop
procedure*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BQ • 3 • 01 PAGE 9

This table, which contains one entry for each working
process in the process group, records the current
status of.each working process (quit_flag, destroy_flag,
quit_pend1ng, runout_lock), and also information,
including the names of event channels, to be used
for certain specific interprocess communications.
Except for the quit_inhibit procedure which modifies
the runout_lock (see BQ.3.06), the only procedures
which modify the working process table execute in
the overseer process.

4) Create machinery for communication between the Overseer
and the working processes in the process-group. The
Overseer creates event channels for completion, start,
hold, and reset events. The event channel id's are
then written in the top of the working process table
and are declared call-type-events, with overseer~completion,
ov~start, ov$hold and ov~reset procedures to be
called in response to these events, respectively.

The Overseer also creates an event channel for the logout
event and stores its id in the working process table.
This channel is a wait-type event channel. In general,
wait-type event channels are used for all events
leading to logouts and call-type channels for all
others. ·

Any ring 32 procedure will be able to signal the
Overseer over these channels since the working process
table is readable in ring 32 and the event channels
are accessible from ring 32.

5) Copy process profile segments (d?fined in BQ.4.03) from
the user's profile into the process group directoryo
These segments constitute the common process profile for
working processes in the process-group. (The Overseer's
process profile is distinct from these segments.) The
wdi r argument to the overseer (if non-nu 11) specifies
a change to be made in the just-copied working directory
table. If wdir is non-null, the overseer now ~pdates
this table by calling session_wdir (see BX.2.12).

6) Create a subsystem data base segment which will be
used to record the current subsystem. The overseer
obtains an initial subsystem for the user from his user
profile (as described above, under 11 subsystems") and enters
it into the data base. Administrative ring procedures
may update the subsystem data base as necessary.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 130.3.01 PAGE 10

7) Finally. inform the user (if interactive) of his successful
login.

Setting up the User Subsystem

The overseer now sets up a subsystem (causes it to begin
execution) which will act as the interface between the
logged-in user and Multics. The three elements defining
the subsystem (login responder. quit responder. and automatic
logout save flag) have already been placed in the subsystem
table in the Overseer process directory. Now the overseer
creates a working process and causes the working process
to begin executing the subsystem's login responder.

The Overseer "calls" (via a qivecall) the login responder
with two "arguments" :

a) a switch which indicates whether the process-group is
interactive or absentee;

b) absentee information (as in call to overseer). if
process-group is absentee.

For the time being. the "arguments" are not actua 1 arguments.
since givecalls include no argument passing. Instead
the overseer places the "arguments" in the •• responder _args"
segment in the process directory of the working process.
before calling the login responder via a givecall. (The
overseer passes no arguments to the login responder in
initial Multics.)

A login responder should:

a) attach stream names for input/output. either to the
ioname "console•• or. in an absentee process-group.
to segments in the file system hierarchy;

b) do work. for example. by calling other procedures and
interacting with the user;

c) return to the overseer for housekeeping (when the login
responder returns. the overseer destroys the working
process. creates a new working process. and causes the
new process to execute the login responder);

d) end the console session by signalling a logout event
to the overseer.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 11

This allows the Working Process to handle input/output
through stream names and allows the Overseer Process to
wait, as soon as possible, for signals requiring immediate
attention. For example, the Overseer can process quit
events and has an opportunity to save the state of the
process-group in case of an automatic logout or suspension
event.

User signals to the Overseer

The user (or subsystem) can signal several events to the
overseer. A gyj_t is an interrupt issued from the user
console to an interactive process-group, or from another
process-group to an absentee process-group. A quit event
means 11 Stop the process -group and then do what I say11 •

The overseer does the job of stopping the process-group
by calling the §1QQ procedure which quits each process
in the group (except the Overseer). The overseer then
starts up the subsystem's gy11 responder, which has the
responsibility for deciding what happens next. Some subsystems
may ask the user for instructions, others may interpret
the 11 quit11 in a fixed manner.

The second user signal to the overseer is logout. When
a process in the group sends this event to the Overseer,
the Overseer destroys the process-group and returns (causing
the group to be logged out). Normally the sending of
a logout event will be embedded in a subsystem procedure,
for example, the Multics Command Subsy~tem's logout command
(see BX.3.03).

The interactive user can also hang up his console (or
his line connection may be cut). The action taken in
this case is the same as for an automatic logout (see
below).

The Overseer takes the following actions in response to
a quit event:

1)

2)

3)

calls the stop procedure to quit all working processes
in the process-group and to prepare the user's console
for further input/output while saving current l/0 buffers
(see BQ • 3. 04);

creates a new working process;

sends an interprocess call to cause the start of execution
of the quit responder in the new working process;

4) waits for any event to occur.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ. 3. 01 PAGE 12

Fig. 5 shows the history of the process-group up through
its f i rs t 11 quit" event.

When a working process sends a start event the Overseer
starts all the quit workin~ process, restores the quit
I/0, and destroys the call1ng process. If there are no
quit processes, the Overseer ignores the event. (The
start event is set by the quit responder when the user
says "restart, I hit the quit button by mistake." All
I/0 has been preserved and the old process-group carries
on as before.)

A hold event means to hold the quit computation so that
it wi 11 not be destroyed when the next quit occurs.

A completion event means stop and destroy the user's computation
and to create a new working process to execute the subsystem's
login responder.

A reset event means "destroy all processes which were
quit". In other words, the new working process is assuming
the role of the login responder and does not need the
quit process(es). The reset event is sent to the Overseer
by the reset procedure (see BQ.3.04).

Thus at any one time the overseer is waiting for at most
nine events:

1. quit

2. logout

3. automatic logout

4. hangup

5. out of funds

6. completion from a working process

7. hold event from a working process

8. start event from a working process

9. restart event from a working process

Note also that when the stop procedure quits the processes
of the process-group, it also destroys all previously-quit
processes, and the event channels over which they might
signal events to the overseer. This cleanup mechanism
means that a quit process may be kept around until the
next quit event, but no longer, so that the number of
processes in the process-group is controlled.

MULTICS SYSTEM-PROGRAM~1ERS' MANUAL SECTION 80.3.01 PAGE 13

The overseer takes the following actions in response to
a logout event:

1) calls the stop procedure to quit all working processes
in the group and to halt input/output;

2) deallocates all resources which this process-group has
allocated to itself;

3) destroys all working processes in the group;

4) sends a completion event to the User Control Process,
which logs the user out).

System Signals to the Overseer

The system can signal three events to the Overseer. An
automatic logout signal is sent when the system has decided
to log out the user, whether he will or not. The out-of-funds
event is signalled to the overseer when the user~s account
runs dry. Both events are currently handled by the Overseer
in the same way (as is a hangup event, caused by the user
hanging up his console or by the telephone connection
being severed). The suspension event is signalled to
an absentee overseer when the process-group is to be temporarily
suspended.

The overseer takes the following action to handle automatic
logout, out-of-funds, or a hangup event;

,)
2)

3)

4)

5)

6)

calls the stop procedure to quit all processes in the group;

informs the (interactive) user of the automatic logout;

tests the subsystem's automatic logout save flag. If
it is 11 111 b, the overseer calls~ (see BQ.3.05) to save
the status of the process-group;

deallocates all resources which this process-group has
allocated to itself;

destroys all processes in the group;

returns (causing a completion event to be sent
to the User Control Process, which logs out the user).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.01 PAGE 14

The overseer takes the same action in response to a suspend
event as to an automatic logout event, except that the
status of the process-group is always saved, regardless
of the automatic logout responder bit, and no comments
are made to the user. The return causes a completion
event to be sent to the Absentee Monitor Process which
takes appropriate action to suspend the process-group
(see BQ.2.04).

Ring Residence

The Overseer, stop, hold, reset, and start procedures
reside in r~ng 1. These are reliable administrative procedures.

The login responder and quit responder reside in user
rings so that any project administrator or user can specify
a subsystem without going through the administrative red
tape necessary for administrative ring residence.

Overseer data bases, such as the subsystem data base (see
above) are in the administrative ring. The user ring
subsystem can call an administrative procedure, change_subsystem
(see 8X.3.03), to modify the subsystem data base. Change_subsystem
checks the requested modification to see if it is a permissible
one before modifying the subsystem data base. ~

To facilitate the sending of ev~nts from the user ring
to the overseer, the working process table is readable
in the user ring (so that event channel id's can be read)
although writable only in ring 1.

~ ,
1/system Process

USER PROCESS-(
1/process-group

Answerin~ Service Process User Control I I Overseer Process r USER PROCESS-GROUP

Answers dial- ~reated by ~/t5ti~fn
executes in

ups; Greates Answering
Administrative

Control Pro- Service
n.:

- -o

cesses to Log to log
nitializes Working Process

f';' -- f»rocess-group;
Users in user in ell luser' s subsyst1

and out '"0 Responds to
~ 'quit" events; executed here.
::s -
0 ielps to handle

,..
Working Proces1

.0

Cl. logout !maY create
::s othez: Wo~~~!lg
0
J.l co

· l?rc;>c~u·- -
I

{I)
{I)

Ql
u
0
1-1
Cl.

SYS 'IEM CONTROL
PROCESS-GROUP

Fig. 1 The Overseer and its Friends

The Overseer is created by a User Control Process after the User Control Process has
logged the user in.

The Overseer creates a working Process in which the user's subsystem can run
(e.g. which executes the user's commands).

m

3: c
r-
-1 -n
Vl

Vl
-<
Vl
-1
fT1
X
I
;a
0
(i')
;o
]>
3
3
fT1
;o
Vl ,.

~
z
i
r-

Vl
fT1
n
-1 -0 z

s
•
VI
•
0

;g
(i')
fT1

..-.
\J1

M sPM Fig. l Initializing the
Process-group
and starting up
the user's sub
ayst:em

process-group
interactive

Create group
process tabl
·and enter

Put logout
channel name
in the group
process table

Get proc~ss
proflle for
working pro
cess, place i
Overseer pro·
cess d rector

Create sub
system table,
enter it in
Overseer proc
ess directory
fill in table

Look up name
f login res
onder in sub

system table

call create :wP

Give_call to
ogin respon~
er in workin
rocess

wait on all events
which cause the process
group to be destroyed
{logout,automatic log-
out, hangup, suspend,
out_ of_ funds)

II ' .~ II

ttach
user's
console

r ::ablish quit~
nd hangup
vents, get
vent channel
ames for quit
nd hangup

events "---J ~

MULTICS SYSTEM-PROGRAM~lERS"' Ml\NUAL

Fig. 3

_L
I call stop I call

stop

=1

call save

=0

Deallocate all
resources
allocated to
this process

.• group

I
Destroy all l ·processes ~n

.I:Sroup (except
Overseer)

[
return

--'

~ refers to flow chart in Fig. 2

SECTION B0 • 3. 01 PAGE 17

)

Call s

Look up quit

I responder in
subsystem
table

Give call to quit
:responder in \\Tork
Lng nrocess

return

Destroy all
processes in
group (except
Overseer)

oak up name
of login re.; ·
spender in
subE1)7stem

create_wp I call

I
Give call to 1
l~gi-;; respond
er in working

recess

return

J

Figure 4. The Quit and

Completion entries to

the Overseer J

e
~
~
Ul

Ul
....::
Ul
~
1:':1

!f
1"0

~
(j)

I
~

I
Ul
t<:!
(")
~
H
0 z
tJ:l
.0 .
w .
0
......

~
t<:!

~

('JJ

; ,,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.3.01 PAGE 19

Answering Service
Process

(1/system)

User
(1

Control
/attempt
login)

Process
to

0
(
verseer Process
1/user-process-

group)

Working Process A

..

dial- proce~s

con-
user
who

up trol f---1~

~ n

A
create·r"Process ~]
over- ;:I control 0 seer .0

Cl.
;:I

Wait 0
bO
I
Ill
Ill
Q)
C)

0
~

Wait Cl.

v
Q)
~
;:I

"0
Q)
C)

0
~
~

~
Q)
Q)
Ill
....
Q)

~

create
!l"rocess wp ~ control

Wait

Stop -

A

B

c

-- q uit
occurred

here

createbrocess~
wp fcontro

\
W~ing Pr~cess B

(/)

Q) ...

~~ D

Figure 5 : History of User-Process-Group 'tJ .j.Jc:
·"0 ;:I
0'"

The figure shows five processes involved in the history of a user process-group.
The diagonal double line is a boundary between process-groups.

The flow of control within each process is shown by a process portrs.in - a
"building-block" picture of calls and returns which occur in the process.
A horizontal line at the top of a "building block" represents a call from
the procedure represented by the "building block" immediately to the left.
A horizontal line at the bottom represents a return. A block without a
bottom (return) line represents a procedure which has not returned.

A zap (~ from Process Control in one process to another process signifies
that the sending.:,process has created a process and has caused a procedure
to be executed by the receiving process, e.g., Process Control in the
Answering Service Process causes the user ~antral procedure to be executed
in the User Control Process. The user process-group illustrated has just
received a signal from the user (who pressed the break key at his console).
After stop had quit Working Process A, the overseer called create wp to
create Working Process B, then by a give_call caused B to execute-the quit
responder. Now the overseer is waiting for an event from B.

