
~·'\ULTlCS SYSTEM-PROGRAfJMERS' fv'ANUAL SECTION BQ .3 .03 PAGE 1

,. Published: 08/24/67

Identification

stop procedure
J. J. Donovan

Purpose

Stop is called by the overseer procedure (See BQ .3.01)
in response to a quit, automatic logout, or suspension
event. Stop halts the execution of a user's work as soon
as possible and establishes a state in which the Overseer
~ay alter, destroy or save the user's work. Stop is a
ring 1 procedure, callable only in ring 1 and called by
the overseer. Stop operates only in the Overseer Process.

The user's work is being done by processes in his process
group known as Working Processes. Asynchronously the
users' 1/0 is being done by Universal Device Managers
operating in other groups and (possibly) by Device Managers
in the user's own group. (See Section BQ.3.00 on the
process-group). The functions of stop are to halt the
Working Processes and I/0 of the user and prevent the
halted processes from waking up. The Overseer may then
alter, destroy or save the halted processes.

Basic Outline

The stop procedure must perform the following functions:

1. Halt all working processes.

2. Prevent the halted processes of a process group
from receiving any wakeups, except those initiated
by a start command. (See Section BX.3.06)

3. Halt all 1/0 processing for this process group.

Stop Implementation

The stop procedure will be called by the following:

call stop;

r 1gure 1 depicts the Flowchart for the ~mplementation
of stop.

,... .. _

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.03 PAGE 2

To halt the working process, the stop procedure calls
the quit_process entry of the Traffic Controller (See
Section BJ.3.03) for each Working Process of the process
group. The calling sequence used to quit a working process
is

call quit_process (A);

where A is the process I.D. of the process to be quit.
Stop finds the I.D. of all working processes in the overseer
data base which contains a list of all working processes
in the process group. (See Section BQ.3.01 for description
of the overseer data base.)

To prevent the halted processes from receiving wakeups,
stop must ensure that the sources of wakeups are inhibited.
In Mu 1 tics there are· two sources of wakeups (. the interprocess
communication facility (See Section BQ.6.04; in the
administrative ring and the process wait and notify module
in the hardcore ring. (See Section BF .15.01). The quit_process
procedure in the Process Exchange ensures that wakeups
are not sent from the process wait and notify module.
The quit_process procedure causes the target process to
block itself. If, however, just prior to attempting quit
the target process was executing in ring zero, quit_process
establishes the necessary mechanism to run the target
process out of ring zero and have the target process go
blocked as soon as it leaves ring zero. The quit_process
procedure returns only after the target process has run
out of ring zero and then called block. Since the process
wait and notify module only sends wakeups to a process
while the process is in ring zero, no wakeups will be
sent to a quit process from the process wait and notify
module. The only remaining source of possible wakeups
is, then, the interprocess communication facility.

To prevent the quit Working Processes from receiving any
v.Jakeups, stop sets a flag (\JIJakeup inhibit flag) in the
event table of each process that is to be quit. The
interprocess communication facility examines the wakeup
inhibit flag before issuing any wakeups. To avoid races,
stop must set this flag before calling the quit_process
entry in the traffic controller.

Stop sets the wakeup inhibit flag in the event table of
a process that is to be quit by the following call to
the event channel manager (See Section.BQ.6.04):

ca 11 set_wakeup_sw (A, II a• b);

MULTICS SYSTEM-PROGRAMMERS' ~\C\NUAL SECTION BQ.3.03 PAGE 3

\vhere the argument A is the process I .D.~ and the argument
11 011 b is the f 1 ag setting~ indicating on.

Before setting the wakeup inhibit flag in the event table~
the stop procedure reads the status of the guit flag which
is set in the overseer data base. If this flag is on 1

indicating that the Working Process has previously been
quit~ then stop sets a destroy flag associated with this
Working Process in the overseer data base. The destroy
flag may be interpreted by stop's caller and perhaps some
appropriate action taken. For example 1 if the quit procedure
was stop's caller~ then the quit procedure destroys the
processes with the flag on. This destruction is a mechanism
used so as to control the number of processes in a process
group.

To summarize the above~ stop obtains the ID of a IJIJorking
Process from the overseer data base. If the process has
previously been quit 1 stop sets the destroy flag on for
this purpose. If the Working Process has not been quit 1

stop sets the wakeup inhibit flag in the event channel
of the Working Process~ thus preventing a quit process
from receiving wakeups. Stop calls the quit_process procedure
which stops the execution of the Working Process.

After quitting each working process~ stop sets the quit
flag associated with the working process in the overseer
data base.

Finally to halt all I/0 processing for this process group
(Step 3 of basic outline) 1 the stop procedure calls the
io_ctl~stop procedure of the I/0 System (See Section BF.3.01).
The io_ctl procedure returns after all I/0 is stopped.

A summary of the information in the overseer data base
which the stop procedure uses is the following: Associated
with each working process there is a process id 1 quit
bit 1 destroy bit 1 and a list of channels over which processes
may signal the overseer.

.... ·-;: " ' ..

. !·, .

MULTICS SYSTEM-PROGRAMMERS' fv'ANUAL- SECTION 80.3.03

Gntry stop) .

I ..
l Get In of a Working Process

yes

Set wakeup inhibit flag in the event ~--------~------------.
channel of target process

call

set quit flag for
this process in the
overseer data base

call io ctl$stop to
stop-all I/O

C return) --

no

Figure 1

set destroy
flag for this process

in the overseer data
base

Implem~ntation of stop

PAGE 4

