
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 8Q.6.00 PAGE 1 

. Published: 03/09/67 
(Supersedes: 80.8.00, 08/29/66) 

Identification 

Overview of the Interprocess Communication Facility 
8. A. Tague 

Purpose 

In order to permit parallel processing, each user job 
and many multics system tasks execute as collections of 
separate processes called process groups, rather than 
as single processes. This organization places a premium 
on effective and efficient control communication between 
processes. It is the purpose of the interprocess communication 
facility to establish such control communication. This 
section describes the facility--both the modules that 
comprise it and their general functioning. 

Note to the Reader 

The discussion tha·t follows assumes familiarity with the 
notion of a process as it is implemented in multics, and 
with the multics file system. Some acquaintance with 
the traffic controller and interrupt handling facilities 
of the central superv1sor is desirable. The structure 
of user process qroups \Vhich perform various system chores 
is Trrlportant to the discussion. A reading of overview 
sections of the MSPM in these areas should be adequate 
·for the first part of this document which discusses general 
concepts. 

The scheme of supervisor protection, the addressing hardware, 
and a more thorough knowledge of the file system are required 
in the section titled 11 8lock Diagram of the Interprocess 
Communication Faci 1 ity" and the sections that follovv. 
These later sections-describe the implementation of the 
facility. 

Introduction 

The basic mode of communication between two processes · 
(refered ~o here as the ~_Qding _P.rocess and the receivi129. 
process) 1s conceptually s1mple: the sending process 
places message information in a segment accessible to 
both itself and the receiving processj the receiving process 
reads the message information from the segment. In addition, 
the traffic controller provides two entry points, 



MUL TICS SYSTEM-PROGRAt-1MERS' MANUAL SECTION BQ.6".00 PAGE 2 

block and wakeup, which make it possible for the receiving 
process to suspend operation while awaiting a message 
(by calling block), and for the sending process to cause 
the receiving process to resume running when a message 
is in the common segment (by calling wakeup). Several 
points of this basic procedure which are fundamental 
considerations in the design and use of the interprocess 
communication facility should be carefully noted. 

First and foremost, communication depends upon the receiving 
process bein~ explicitly pro~rammed to receive a ~essage. 
There is no 1nterruot rimit1ve of a 11 now here this" variet 
ava1lable to the send1nq recess. The call wakeup process 
X to the tra fie controller merely causes process X to 
be rescheduled if it is currently blocked, and does nothing 
if the process is currently scheduled to run (ready), 
or running. Enforced communication can be accomplished 
only by enforcing the programming of ca~ls to procedures 
in the receiving process desi~ned to receive messages. 
A process may have its execut1on suspended by another 
process, but, on being resumed, the suspended process 
will continue to do whatever it was engaged in before 
suspension. If that does"not include looking in interprocess 
communication segments, no interprocess communication 
w i 11 take p 1 ace. 

Another set of constraints on interprocess communication 
arises from the use of shared data segments for communication. 
Such segments must be known to both· the sending and receiving 
processes, which implies a prior communication of the 
identity of the segment to be used between the processes. 
The segment used may be a programmed constant of the sending 
and receiving procedures in each process; the segment 
name may be passed to a process when the process is created; 
or, it may be passed in an interprocess message. In any 
case, there must be some communication between the processes 
which establishes those segments to be used for communication. 
Equally important, a sending process must have (at least) 
write permission for the segments used, and a receiving 
process must have (at least} read permission. (In practice, 
it will usually be necessary for both sender and receiver 
to have both read and write permissidn in order to operate 
interlocks which prevent conflicts between processes sharing 
the segment.) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 3 

Finally 1 there is the question of who is to be permitted 
to communicate with whom. Validation mechanisms must 
be established which permit a receiver some control over 
who can send him messa~es 1 but which also permit reasonable 
guarantees that communication important to system control 
can be accomplished. 

Events and Event Channels 

Fundamental to the interprocess communication facility 
is the notion of an event. An event is anythin~ recognized 
during the execution of one process that is of Interest 
to some other process 1 or perhaps some other procedure 
of the first process. For example, the completion of 
the task of collecting the characters of an input line 
from a typewriter is an event which mi~ht be recognized 
by a device manager process and be of Interest to a working 
process. An event is a unique occurren~e; it happens · 
exactly once. If the device manager process of the example 
recognizes several successive line completions, each completion 
would be a separate event. The primitive interprocess 
message is a signal from one process to another that an 
event has occurred. 

Events are signalled by the interprocess communication 
facility over event channels. Conceptually, an event 
channel is simply a 1irst-In-first-out queue of bit strings 
associated with a process that wishes to receive event 
signals. A bit string called an event id is added to 
the channel queue by the sending process-each time it 
signals an event. The event id is a unique bit string 
generated by the sending process for each event signalled. 
In the example of a device manager process signalling 
line completions to a working process, a sequence of ten 
completed lines would cause the device manager to signal 
ten completion events; each event would be represented 
by a unique event id in the channel queue. Moreover, 
the event ids generated could also be stored with the 
respective lines that generated them in the line buffers, 
which would permit the receiving process to discover the 
order in which the lines were typed by reading the order 
of event ids in the channel queue. The receiving process 
can read the event queue of a channel by executing a call 
which returns the queue of event ids and resets the queue 
to zero length. 



MUL TICS SYSTEM- PROGRA~1MERS" MANUAL SECTION. 8Q.6.00 PAGE 4 

An event channel always has exactly one receiving process, 
the process that creates the channel, but the same event 
channel may be used by several sendin~ processes. A process 

.may create as many event channels as 1t needs. Usually, · 
a different event channel would be created for each kind 
of event whose occurrence is to be signalled. 

A module called the event channel manager is provided 
to maintain event channels. It provides calls which create 
event channels, which place event ids in event channel 
queues, which read and reset event channel queues, and 
which delete event channels no longer needed.· · 

~nt Channel Types and Modes 

A process must specify three things when creating an event 
channel: 

. 
which processes are permitted to signal over the channel, 
the sending processes; 

the channel ~: 

the channel mode: 

There are three event channel types: intrauser channels, 
inter~ channels, and device signal chan~els. There 
are also three event channel ~odes: event gueue mode, 
event count mode, and event ~ mode. · 

The channel type controls which processes have access 
to the channel by determining the data bases in which 
the channel data is stored. The data base in which the 
channel data is stored, in turn, determines the protection 
ring (or rings) where the channel data is stored. Also, 
different data bases have different processes on their 
access control lists. Intrauser event channels only permit 
communication between processes of the same process group 
since the table containing intrauser channel data is accessible 
only to this user process group. The sending process 
id specified for an intrauser channel must. belong to the 
same process group as the receiving process that creates 
the channel. If the sending process id specified is zero, 
any process of the grou2 that knows the channel id and 
its receiving process id can signal over the channel. 
Interuser event channels permit communication between 
any two processes. If the sending process id specified is zero 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 5 

any process at all that knows the channel id and its receiving 
process ra can signal over the channel, however, the device 
signal channels are very special. They are maintained 
in "wired down" core areas for the purpose of signalling 
by hard core pr6cedures that cannot tolerate the page 
faults that are-possible in referencing the paged data 
bases in which other types of event channels are kept. 
Because they are,in "wired down" core, it is important 
that they not consume much space; therefore, they do not 
queue event ids.· They always operate in the event time 
mode described in the next paragraph. 

The mode of a channel determines the kind of signals sent· 
over the channel. In event queue mode, the signalling 
method is that described earlier:· each call to signal 
over the channel causes an event id (including time of 
occurrance) to be appended to the channel's event queue. 
Resetting the channel empties the queue. Since the queuein~ 
of event ids requires space and time, the receiving process 
may specify the event count mode, in which case an event 
count is kept rather than an event queue. Each call to 
signal over the channel increases the event count by one. 
Resettin~ the channel _zeroes the count. As another alternative, 
the rece1ving process may specify the event time mode, 
and a single clock time replaces the event queue. A call 
to signal over the channel stores the current clock time 
in the channel. Resetting the channel resets the time 
to zero. If several signals are sent before the channel 
is reset, only the first signal stores the time. The 
event time mode is always the mode of device signal channels.· 

process Synchronization 

The basic purpose of interprocess communication is to 
coordinate the computations of independent, but related, 
processes. A typical situation is presented in the following 
example: a working process wishes to request output of 
the results of the first part of a computation and continue 
with the second part of the computation while the I/0 
is being done, but does not want to request output of 
the results of the second part of the computation until 
the first I/0 request is completed. The user process 
group has a separate device manager process for just such 
a purpose. The device manager process can supervise the 
execution of I/0 requests while the \JIJorking process continues 
with other computations. 



,,.--... 

MULTICS SYSTEM-PROGRAM~1ERS' f'AANUAL SECTION 80.6.00 PAGE 6 

Two event channels are used to synchronize the two processes 
of this (simplified) example. One event channel would 
be created by the device manager and its channel id given 
to the working process with the understanding that an 
event in this channel will be interpreted as a request 
for some I/0 by the device manager. A second channel 
would be created by the working process and its channel 
id given to the device manager with the understanding 
that an event in the channel will be interpreted as signalling 
the completion of the requested 1/0 task by the device 
manager. 

The creation of the two event channels does only part . 
of the desired job. The working process wants to stop 
computing and wait for the first 1/0 request to be completed 
before placing a second I/0 request. This requires that 
the working process call the block entry of the traffic 
controller. The block entry is not accessible in the 
user ring (it can be called only from the administrative 
and hard core rings); therefore, the working process 
would like to be able to call a procedure which would 
result in a call to block. Similarly, the device manager 
process needs to be able to call wakeup. Moreover, there 
is a need for a procedure to coordinate the wakeup sent 
by the device manager with the event in the channel used 
to signal I/0 request completion. · 

The coordination of calls to block and wakeup with event 
channel signalling is the responsibility of the wait 
coordinator module of the interprocess communication facility. 
It prov1des two basic calls for user programs. First, 
there is a call to be executed by the sending process 
that signals an event over a designated event channel, 
and then sends a wakeup to the receiving process for the 
channel. Second, there is a call to be executed by the 
receiving process that stores a list of event channel 
ids and calls block. Any IJIJakeup signal received vJhen 
the process is blocked this way in the ltJait coordinator 
causes the process to check the event channels on the 
stored list. If any channel has an event id in its event 
queue, the procedure returns to the caller. Othervl)ise, 
it calls block again. Remember that a process may be 
awakened by a signal over a channel on which it is not 
currently waiting.-~~ 

~':This description of the wait call is simplified for clarity. 
In order to be sure that no \·Jakeups are missed, the event 
channels must also be checked before block is called. See 
section 80.6.05 for details. 



MUL TICS SYSTEr-1- PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 7 

Interprocess Calls 

Consider again the example of a device manager process 
·running, say, a typewriter. Such a process will typically 
spend a large part of its life in the blocked state waiting 
for either a new request for I/0 from a working process, 
or an interrupt from the GIOC announcing some communication 
from the typewriter. Both of these kinds of signals will 
be received via event channels. A device manager will 
typically have a large number of event channels for which 
it is either sender or receiver~ and when it goes .blocked 
it will be waiting upon signals from many different channels. 
When it is awakened, the device manager process will want· 
to execute different procedures depending upon which event 
channels have nonempty event queues. A natural way of 
lookin~ at a signal sent to a device manager process is 
as an .1nterf?roces.s call--a request from the sendi~g.process. 
that a particular procedure be called by the rece1v1ng 
process. The interprocess communication facil·ity provides 
two kinds of interprocess call: the event call and the 
givecall. ----

The event call mechanism is part of the wait coordinator 
module. A call to the wait coordinator associates an 
event channel with a procedure name supplied by the caller 
in a table maintained by the wait coordinator. I:Jhenever 

. an event is signalled over that channel and the process 
is waiting (i.e. has called block via the wait coordinator), 
the process wakes up in the v1ork coordinator ~.rJhich calls 
the procedure associated with the channel in the table. 
The procedure is called with the event channel id as the 
only argument. The calling process must place any other 
data needed by the receiving process from the caller into 
a data segment accessible to the receiver. The procedure 
called can be programmed to look in that shared data segment. 
The event call offers limited service at low overhead. 

The givecall is handled by a module called the call passer. 
It is simpler to use, but involves higher overhead than 
the event call. The caller supplies the id of the called 
process, the name of the called procedure,·and its argument 
list. The call passer places the symbolic procedure name 

' ~nd argument list (actually modified pointers to the arguments) 
into a special data base associated with the call passer 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 8 

module of the called process. It then signals an event 
over a channel whose id is found in the data base used 
to pass arguments. Normally~ a procedure expecting a 
givecall will be waiting for a signal over that channel. 
When the called ·process wakes up~ it calls a procedure 
of the call passer which takes the procedure name and 
arguments out of'the data base~ constructs a call to the 
named procedure~ 'and executes it. On return~ the call 
passer signals an event over an event channel created 
for that purpose by the givecall procedure of the calling 
process. The caller~ after issuing the givecall~- ·can 
either continue computing or wait on this event channel 
for the return signal. 

A primary use for the givecall is process initiation. 
When a new process is created~ it is laid down in the 
blocked state ready to receive a givecaJl from its creator.· 
This enables a process that spawns a new process to control 
the procedure that is first executed by the new process. 
Among other things~ the initial givecall to a newly created 
process can pass as arguments the names of data segments 
to be used in future ~nterprocess signalling. 

Block Diagram of the Interprocess Communication Facility 

Figure 1 shows the modules and data bases of the inte~process 
communication facility~ their positions with respect to 
the rings of protection~ and the paths of possible calls. 
The diagram also includes the traffic controller in order 
to show its relationship to the facility. The preceding 
paragraphs have mentioned the three modules in the administrative 
ring: the event channel manager~ the wait coordinator~ 
and the call passer. The discussion \I'Jhich follows will 
outline the functioning of those modules and discuss their 
associated data bases. It will also treat the modules 
in the hard core ring which have not yet been mentioned. 

The interuser event table manager and the device signal 
·table manager can be looked upon as extensions of the 
event channel manager. They manipulate event channels 
in the hard core ring. The interuser event table manager 
creates and maintains interuser event channels used in 
communication between process groups. Since different 
process groups belong~ in general~ to different usersl 
care must be taken lest improper signalling by a process 
in one group cause trouble in another group. Signalling 
between processes fo the same group can be carried out 



1\ilU'L TICS SYSTEf\1- PROGRAHt·1ERS" MANUAL SECTION BQ.6.00 PAGE 9 

in the administrative ring because improper signalling 
within a group can only disrupt one user. Adequate protecticn 
for signalling between groups requires that the channel 
data be maintained in the hard core ring. The device 
sianal table manager is in the hard core ring for these 
same reasons, but is separate from the interuser event 
table manager because the channels it manages are a special 
type. In particular, they reside in 11 vJired down 11 core. 
This means that some of the procedures which maintain 
the channel data must also reside in 11 wired down 11 core. 

Event Channel Creation 

A process that wishes to be notified of some event, a 
receiving process, must create an event channel over which 
it can be signalled. This is accomplished by a call to 
the event table manager giving the channel type, the channel 
mcde, and the sending process id. The event table manager 
examines the type of channel and determines whether it 
is to maintain the channel data in the administrative 
ring (intrauser channel), or whether the channel data 
is to be maintained in the hard core ring by the interuser 
event table manager (interuser channel). (The device · 
signal channel is a special case which will be discussed 
later.) 

If the channel is an intrauser.event channel, the event 
table manager: 

1 Obtains a unique bit string to be used as channel id. 

2. Makes op an entry in the event table which contains 
a pointer to the first entry of the event queue, the 
sending process id, the channel mode, and other data 
associated with the channel. 

3. Makes up an entry jn the event channel index consisting 
of the event channel id, the channel type, and the 
location of the channel data entry created in step 2. 

4. Returns the event channel id to the caller. 

Both the event table and the event channel index are per 
process data bases. The event table has one entry for 
each intrauser event channel for which the process is 
the receiving process. The event channel index has one 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 10 

entry for each channel for which the process is receiver. 
Any event channel which the process is to wait upon must 
be represented in the event channel index for the process-
that is, a process can only wait for signals over channels 
for which it is the receiving process. Both tables must 
be accessible to a sending process in the administrative 
ring. Given only the receiving process id, a sending 
process can construct the name of either table in order 
to gain access to it. Naturally, the sending process 
must have read and write permission in the administrative 
ring for the segments involved. 

If the channel being created is of the interuser type, 
it is maintained in the hard core ring by the interuser 
event table manager. The event channel manager calls 
that module to perform steps 1 and 2. The channel id 
generated in step 1 is returned by the interuser event . 
table manager to the event channel manager in the administrative 
ring which performs steps 3 and 4 as in the intrauser 
case. The entry described in step 2 is made up in the 
interuser event table becuase the entry must be accessible 
to a sending process of another process ~roup. The interuser 
event table contains one entry for each 1nterprocess event 
channel for which the 'process is receiver. It is accessible 
to any sending process, but only in the hard core ring. 
Given only the receiving process id, a sending process 
can construct the name of the receiver's interuser event 
table in order to gain access to it. 

Ch~ Creation in the H~d Core Ring 

There are two kinds of channel that can be created without 
leaving the hard core ring: an interuser channel, or 
a device signal channel; The interuser channel is created 
by a direct call to the interuser event table manager. 
This call sets up the channel just as if the create call 
had come from the event channel manager in the administrative 
ring. The channel id and the location of the channel 
data in the interuser event table are returned to the 
hard core procedure creating the channel. These two items 
can then be passed to an ad~inistrative or user ring procedure 
which wishes to wait on the channel. This procedure must 
call the event channel manager with the channel id and 
location of the channel data as arguments to create an 
event channel index entry for the channel. The process 
may now wait upon the channel like any other. 



MUL TICS SYSTEr-1- PROGRAMMERS" MANUAL SECTION BQ.6.00 PAGE 11 

While having a channel created in the hardcore ring is 
optional for interuser event channels, it is the only 
way a process can use a device signal channel •. A device signal 
channel always exists in the sense that the space for 
the channel data is allocated in "wired down" core at 
system initialiiation time. A process wishing to use 
a device signal channel must have been handed a device 
index by a hard ~ore procedure that controls the channel 
aata space located by the ~evice index. This usually 
occurs because the process is being given control of some 
peripheral device. If the process is to wait on the device 
signal channel, the event channel manager is called to 
make up an event channel index entry for the channel. 
The event channel manager is given the device index, which 
is the location of the channel data in the device signal 
table, and it returns an id for the channel after making 
up an entry in the event channel index. The process can 
now wait upon this channel like any other. 

Event Channel Signalling 

In order to signal. over an intrauser or interuser event 
channel, a sending process must be given a channel key 
by the receiving process which created the channel. A 
channel key is an array which consists of the channel 
id and the receiving process id. It is stored by the 
receiving process in a segment accessible to the sending 
process or processes; it must be supplied as argument 
to the event channel manager when an event is to be signalled .. 
The event channel manager uses the receiving process id 
to determine whether or not the receiving process is in 
the same process group. If it is not, the channel must 
be an interuser event channel. If it is, either the channel 
is an intrauser event channel, or a process of the group 
is signalling over an interuser channel (it is convenient 
to permit this). Either way, the event channel index 
of the receiving process is a~cessible to the sending 
process and the channel type can be obtained from there. 

In the case of an intrauser channel, the sending process 
event channel manager: 

1. Retrieves the event table index of the receiving 
process and looks up the entry for the event channel id. 



MULTICS SYSTEM-PROGRM·1MERS' MANUAL SECTION 80.6.00 PAGE 12 

2. Obtains the channel type and channel data location 
from the event channel index entry. 

3. Retrieves the event table of the receiving process, 
and looks up the channel entry, provided that the 
event channel type is intrauser. 

4. Updates the event tab,le entry as required by the 
channel mode, provided that either the sendin~ 
process id of the entry is that of the execut1ng 
process, the sendin~ process id of the entry is 
zero, or the execut1ng proc~ss is the receiving 
process of th~ channel. 

5. Returns the event id, event count, or event time 
generated by the update to the caller. 

6. Calls wakeup for the receiving process if requested 
by the ca 11 er. 

In the case of an interuser channel, the event channel 
manager calls the "interus<Sr event table manager, passing 
the event channel id and receiving process id as arguments. 
The interuser event table manager performs steps 3 through 
6 as given for the intrauser channel above, except that 
the interuser event table is referenced in steps 3 and 

·4. Steps 1 and 2 are unnecessary because the channel 
id can be used to locate the channel data in the interuser 
event table. Also, the event channel manager passes the 
argument returned in step 5 back to its original caller. 

The wait, coordinator can be called to signal an event 
rather than calling the event channel manager directly. 
This results in precisely the same action, but a list 
of channel keys can be passed in a single call. In addition, 
exactly one wakeup wi 11 be sent for each different t~eceiving 
process on the list of channels. 

Signalling over device signal channels is restricted to 
hard core ring procedures. The reader will find a discussion 
of how a hard core procedure sends signals ·over a device 
signal channel in section BQ.6.04. 

Reading, Resetti.!JSJ, and Deleting Event Channels 

In order to read an event channel, the user calls the 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 13 

event channel manager with the channel id as ar~ument. 
The event channel manager looks up the channel 1d in the 
event channel index of th~ process. The channel type 
tells the event channel manager whether it can read·the 
channel directly from the event table (intrauser channel), 
or whether it must call the interuser event table manager 
(interuser channel) or the device signal table manager 
(device signal channel) to read the channel data from 
the hard core ring tables. Depending upon the channel 
mode, the event queue, count or time is read from the 
channel data. The caller also indicates whether or not 
the channel is to be reset ~fter reading. 

Event channel entries are deleted from the event channel data 
bases in either of two ways: by a specific delete call 
to the event channel manager, or by the demise of a process 
which causes the demise of its per process data bases . 

. 
Only the process which creates a channel can delete it. 
Device signal table entries are not deleted, they are 
merely reallocated to different uses; however, the event 
channel index entr.ies for device signal channels are deleted 
by either delete call~ or·by the demise of a process. 

Event Call Table 

The event call table is a per process table maintained 
by the wait coordinator module. It contains one entry 
for each event call currently in existence for the process. 
Each entry contains an event channel id and a procedure 
entry point. Whenever control returns from blo:k to the 
wait coordinator because of a wakeup, each event channel 
that is listed in an entry of the event call table is 
read out (but not reset). If the channel contains any 
signals the procedure listed for that entry is called. 

Note that the event call table provides a way of storing 
all those event channel ids on which a process is currently 
expected to \rJait vvhich the user whould prefer not to have 
to explicitly list in wait calls. 

The Work oueue and the Call Passer 

The work queue is a per process data base maintained by 
the call passer. When a process is created, its work 



. . . 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 14 

queue contains only an event channel id and is accessible 
to the creating process for both reading and writing in 
the administrative ring. A signal on this channel causes 
the created process to execute a procedure of the call 
passer named §_fceot call. If the creating process issues 
a givecall, a procedure name, and an argument list for 
that procedure are placed in the work queue of the created 
process and an event is signalled over the channel whose 
id is at the head of the work queue. This causes accept_call 
to call the procedure with the arguments supplied, and 
to send a signal over an event channel supplied by the 
caller when the called procedure returns. · 

Note that there are two event channels involved in signalling 
for a givecall. One channel is created by the called 
process when that process is created. Its channel id 
is the first item in the work queue of the called process .. 
It is used by the calling process to signal that the arguments 
for an interprocess call have been placed in the work 
queue. The other channel id is placed in the work queue 
of the called process by the calling process along with 
the arguments of the call. It is used by the called process 
to signal the return from·the call to the calling process. 

A process can issue a givecall to a second process at 
any time the work queue of the second process is accessible. 
Repeated givecalls result in an ordered list of calls 
in the receiving process work queue, and a corresponding 
queue of event ids in the event channel whose id is at 
the head of that work queue. Repeated execution of accept 
call will clear the work queue by executing the calls 
in order; however, the work queue can also be cleared 
without executing the stacked calls by resetting the event 
channe 1 . 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.00 PAGE 15 

- - - ,.,.--· -
ADMINISTRATIVE RING 

WAIT 

COORDINATOR 

TRAFFIC 
CONTROLLER 

(block, wakeup) 

/ 
/ 

INTERUSER 
EVENT TABLE 

MANAGER 

NOTES: 

1. PER PROCESS DATA 
BASES: 0 

2. PER SYSTEM DATA 
BASES: 0 

EVENT -
CHANNEL 

MANAGER 

' 

DEVICE 
SIGNAL TABL 

MANAGER 

----------

rii!\ 
0 

CALL 

PASSER 

HARD CORE RING ------

FIGURE 1, BLOCK DIAGRAM OF THE INTERfROCESS 
COMMUNICATION FACILITY 


