
MU L T lC S SYSTEM- PROGRAMMERS' MANUAL SECTION BQ.6.01 PAGE 1

Published: 07/21/67

Identification

How to use the Interprocess Communication Facility
Michael J. Spier

Purpose

Interprocess Communication is basically very simple~ in
fact so simple that rules and conventions have been made
so that interprocess signals be correctly interpreted
on both sides of a process boundary. Upon this are constructed
a number of superstructures which give the user certain
sophisticated services. The set of procedures associated
with these services is ·called the 11 Interprocess Communication
Faci1ity11 • The facility is comprised of several modules
which are described in detail in MSPM sections BQ.6.03-08.
This section tries to deal with the use of the Interprocess
Communication Facility~ it does not explain any terms
on the assumption that the reader is already familiar
with them~ from reading the overview BQ.6.00.

Introduction

As will be seen~ the Interprocess Communication Facility
is built upon the Basic Interprocess Communication mechanism.
In designing the separate modules~ a number of constraints
-- most of them peculiar to Multics -- had to be considered.
Thus~ when the reader reads through MSPM sections BQ.6.03-08
he invariably comes across discussions of things such
as device signals~ rings (!)~ process-groups~ signalling
modes~ lists~ queues and the such~ which are discussed
in detail in one section and then dropped completely in
the following one~ so that the reader is justified in
asking himself "and where does all this leave me?''. The
problem is that certain kinds of events and event channels
look different when viewed from the sendin~ or receiving
ends of Interprocess Communication~ and st1ll different
when viewed in between sending and reception while they
are manipulated within the facility. And yet~ in fact~
seen from a subjective point of view~ be it either sending
or reception~ Interprocess Communication presents itself
as simple and uniform.

Initial Communication

Interprocess Communication alwsYs starts with a receiving
process' willingness to receive messages from a sending
process. The receiving process creates an event channel

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.01 PAGE 2

for that purpose and makes the associated event channel
name known to the sending process via the Basic Interprocess
Communication mechanism. This means that it places the
event channel name within an agreed upon data structure ·
in a segment known and accessible to both processes, assuming
that the sending process knows ~ the receiving process
is. If the sending process does not previously know who
the receiving process is, then the receiver's process_id
must be communicated as well as the event channel id.
Example: The prospective receiving process wants to access
a systemwide data base and finds it interlocked. It therefore
creates an event channel and puts the event channel name
plus its own process_id in a location which is associated
with and agreed upon by the users of that data base.
It then calls~ specifying the newly created event
channel as argument. When the process that has locked
the data base finally unlocks it, it looks up the associated
location in which it finds a process_id and an event channel
name. It sends to the receiving process (process id)
an event signal over its event channel (event channel
name). The receiving process recognizes the received
event signal as indicating that the data base is now potentially
accessible.

As we can see, this communication depends upon the agreement
between both processes (as to the associated location),
the sending process' willingness to honor the agreement
(looking up the location after unlocking the data base
and the sending of an event signal) and the correct interpretation
of certain data by both processes (the sending process ·
interprets the associated locations non-zero value as
being a process_id and an event channel name, the receiving
process interprets the reception of a signal over its
event channel as indicating that the data base is now
potentially accessible).

Another example would be the arrival of an I/0 interrupt.
The process which detects the interrupt can be any process.
It knows that it has to communicate that specific event
to some receiving process yet does not know the receiving
process' id nor the associated event channel name. It
therefore honors a systemwide agreement by which it puts
a message in a mailbox which is associated with the 1/0
device. In that mailbox it also finds a process id for
which it calls w1keu~ (remember that a call to ~aSf by
a receiving processs associated with a call to ock
by the wait coordinator).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.01 PAGE 3

The receiving process wakes up. looks up its I/O device
associated mail boxes and transcribes their contents into

, the appropriate event channels.

As can be clearly seen from these examples, the kind of
event to be signalled (or received) and the degree of
ignorance of one another call for different kinds of agreements
between communicating processes. As a rule. unless a
sending process knows a receiving process' process id
pnd event channel name, no communlcetlon vie the Interprocess
Communication Facility is possible.

Besic Interprocess Communication

The Interprocess Communication Facility cannot be used
unless a basic interprocess communication has been transmitted
by the (future) receiving process to the (future) sending
process. Any means of communication (going as far as
interconsole messages) may be used in order to pass an
event channel name to a prospective sending process.

By "Basic Interprocess Communication" we refer to the
act of a prospective receiving process which places an
event channel name (and possibly its own process id) in
a location within a segment which it shares with the prospective
sending process. in accordance with an agreement between
both processes. How and where this information is stored
is up to both processes to agree upon. However, by convention.
the reception of such a communication is done according
to the following rule: The location's zero value is interpreted
as "no basic interprocess communication established".
and its non-zero value is accepted and interpreted as
being an event channel name (and possibly a process id).
The receiver of such a communication (the prospective
sending process) has to know the kind of event to which
this event channel name is dedicated.

This rule is necessary because, contrary to an Interprocess
Communication Facility event signal. a basic interprocess
communication cannot be accompanied by a control communication
(wakeup) and consequently must have one specific reserved
value (in this case zero) which is interpreted as an indicator,
the remaining possible values consituting the.actual message.

How t9 create an eyent cbenn~l

When a process is interested in being notified about some
event by another process, it first has to create an event
channel dedicated to that kind of event. A procedure

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.01 PAGE 4

within that process calls create_ev_chn (see MSPM section
BQ.6.04), and is handed back, upon return, the newly created
channel's event-channel-name which it then communicates
(as a basic interprocess communication) to the sending
process.

A call to create_ev_chn carries the following implication:
Create ev chn finds out the caller's validation ring number
and stores it in the created event channelo This ring
number is the channel's protection level for all calls
emanating from within the receiving process. This includes
not only calls to modify or delete the event channel,
but also calls to the wait coordinator associated with
this channel (remember that an event channel cannot be
read directly by a user's procedure but must be interrogated
through the wait coordinator's entries "wait" or "test event").
If the user intends to wait upon the event channel from
a ring n procedure, he should not create the channel by
a procedure which resides in a higher privilege ring or,
if he does, he should set the creating procedure's validation
ring number ton before calling create_ev_chn.

How to determine an eyent channel's mode

When a process creates an event channel, it has to specify
the channel's signalling mode. It is determined according
to the following rules:

1. A device_signal_channel always uses the
event count mode. - -

And for all other channels:

2.

3.

An event channel (be it an event wait or an
event_call channel) which has onTy one sending
process signalling over it, and where the
receiving process does not want to know each
individual event's event_id uses the event_count_mode.

Only when the receiver is interested in knowin~
specific event_ids, or when more than one send1ng
process signal over the same event channel and it
is of interest to know which event was signalled
by what process does one have to use the
event_queue_mode.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.01 PAGE 5

When interrogating an event channel. it is imperative
to know the event channel's signalling mode because upon
it c~pends the amount of precise information returned
to the interrogating procedure. The interre>gation of
an f!vent channe r. regard less of its mode, returns a single
event indicator at a time. In order to read n event indicators
from an event channel, it has to be interrogated n times.

An event count mode channel returns an event indicator
which contains-the following: .

a. Its own event_channel_name

b. An event_id which corresponds to the first event
signalled since that channel was last reset to zero.

c. A zero-value process id.

An event_queue_mode_channel returns an event indicator which
contains

a. Its own event_channel_name

b. The event's event_id

c. The sender's process_id.

An event channel interrogation always returns the channel's
event_channel_name because the calling sequence to the
Walt Coordinator allows the caller to specify a _l_1li of
event channels to be interrogated in which case ~s
important to be able to identify the event channel whose
signal is returned by the Wait Coordinator.

How to grant anoth~r user access rights to an ey~nt channel

A newly created event channel is by default accessible
only to member processes of the creator's process-group.
It has a channel-access-list containing a single entry
which is the creator's process-group id. By convention,
an event channel with no channel-access-list is accessible
to any process which knows its event channel name. a channel
with a channel-access-list is accessible only to member
processes of process-groups whose id ls on that list.
Consequently. a newly created event channel is out of
other process-groups' reach. In order to grant another
process-group access to an event channel, a call has to
bemade to give access. which has as arguments an acces.s-switch
and an access-1Tst.

,,........._ MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.01 PAGE 6

If the access-switch has the value "O''b., the whole channel
access-list currently associated with the event channel
is deleted., including one's own process-group id., and
the channel is made accessible to all (in this case, the
access_l ist argument is ignored).

If access_switch has the value "1"b., the specified access-list
is appended to the current channel-access list.

How to send an eyent signal

A procedure within a sending process becomes aware of
an event which it knows to be of interest to a receiving
process. It wants to signal this event. In. order to
do so it has to know whether the event is a system interrupt
or not.

Syftem Intjrrupt The sending process knows the device
wh ch orig nated the System Interrupt. It calls
set_dev_signal (device_index)., where device_index is
a number associated with the l/0 device. (See MSPM
section BQ.6.07.)

Other than System Interrupt The sending process must
know of a location within its address space which
contains a receiving process' id (labeled name_of_process)
and of another location which contains an event channel
name which belongs to the receiving process (labeled
name_of_event). Depending upon whether the sending
procedure resides in ring 0 or rings 1-63 it calls
IPGECM$set_event or ECM$set_event respectively, giving
as arguments "name_of_process" and "name_of_event''.
An additional argument is an event_id generated by
the sending process. (See MSPM sections BQ.6.04-05.)

Hqw to be notified of an event

We assume that an event channel has been created by a
receiving process and its event channel name made known
to a sending process.

The receiving process may simply want to inquire whether
or not an event has been signalled over that channel.
It invokes test event which immediately returns the required
information.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.01 PAGE 7

The receiving process may wait for an event to occur by
calling~, which will return to its caller only if
the awaited event signal was received over its associated
event channel.

The third possibility is for a receiving process to define
a procedure which is to be executed whenever an event
signal is received without specifically interrogating
the event channel (test_event,wait). It associates the
procedure with the event channel by calling decl_ev_call_chn
(see MSPM sections 80.6.04-06).

Figure 1 is a diagram to illustrate the different attributes
of an event channel as seen from the sending and receiving
ends of the Interprocess Communication Facility.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ. 6. 01 PAGE 8

As seen by Sending Process

Type of event.·
external to memory internal to memory
(hardware interrupt)

Type of event channel device signal channel communication channel .
Signalling mode event count mode event count mode

event queue mode

To signal, call:
in ring 0 ~stm$set_dev_signal IPGECM$set event
in rings 1-63 ECMjset_event

As seen by the Receiving Process

Type of event channel

event wait channel event call channel

receiving mode event count mode . event count mode
event queue mode event queue mode

explicit
interrogation by yes yes
test event

explicit
interrogation by wait yes no

Lmplicit executLon of
an associated no yes
procedure

Figure 1

Event channels as seen by sending and receiving processes

Note the difference in point of view. The sending process is concerned
with the event's origin, the receiving process with the event channel's
type.

