
.-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.03 PAGE 1

Published: 07/24/67

Identification

Events and Event Channels
Michael J. Spier

Purpose

Interprocess Communication, as described in the overview
(MSPM Section BQ.6.00) is accomplished in the following
manner: A process becomes aware of an event that it knows
to be of interest to another process. This process shares
a common data base with the process that wishes to be
informed of the detected event. It therefore places data
in the shared data base, then calls "wakeup" for the second
process. The second process wakes up (if blocked), reads
the data and interprets it to be an Event Indicator.

A process that wishes to receive event indicators from
another process must provide a data base to be shared
between it and the sending process. Such a data base
is called an Eyent Channel. We use the expression "To
signal an event over an event channe1 11 to describe the
action of a sending process which writes a certain information
in a segment known to him and at least one other process
then calls wakeup for the other process, and the expression
"to receive an event signal over an event channel" when
we wish to say that the receiving process wakes up looks
into the very same shared data base and finds the information
written there by the sending process.

As explained in the overview (MSPM section BQ.6.00), the
Interprocess Communication Facility is an extension of
the control communication provided by the Traffic Controller
(process exchange), associating a limited amount of control
information with each call to block and wakeup. This
section deals with the definition of events, event indicators
and event channels.

Introduction

An event is anything which is observed during the execution
of some process (henceforth called the sending recess)
and which is of interest to some other process rece ying
erocess) or perhaps some other procedure of the first
process. An event is a unique occurrence and can happen
only once.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 2

Associated with an event is an event id which is a unique
bit string. Furthermore. an event is associated with
an Event Channel. which has a unique bit string name known
as an Event ChannTl Name. Several events of a similar
kind may be assocated with a common event channel which
has a single event channel name.

An Event Channel is a data base shared between a receiving
process and one or more sending processes. An event channel
is always associated with exactly one receiving process
and exactly one event channel name. It fs the receiving
process that creates. maintains, reads and eventually
deletes an event channel. A sending process can only
write into certain parts of an event channel. and that
only under the receiving process' control.

An event channel is a first-in first-out queue of Eflent
Jndicators. The term "event indicator" refers to t e
c;ontrol information associated with an event. Its value
rnay vary. and usually becomes more precise as it is passed
·From the sending process. via the Interprocess Communication
faci 1i ty. to the receiving process. An event indicator
always implies a unitary value associated with an event
and kept track of (internally) by the Interprocess Communication
Facility. insuring that all events communicated to a receiving
process will be remembered. The event indicator may also
contain an eyent id. and a sending process id. The value
of an event indicator depends upon the event channel's
~of signalling.

Whenever a sending process adds a new event indicator
to a receiving process' event channel. he also calls wakeyp
for the receiving process (see Overview. MSPM Section
BQ.6.00). Wbeneyer referencG is mp~e to t~e siqnallin¥
of an event oyer an eyynt chann~l.t impl es the writ ng
of an eyenl Indicator nto pn event cbpnnel and a cpll
to wakeup.

~vent Clpss

An event is signalled by a sending process to an interested
receiving process over an event channel which belongs
to the receiving process. From the receiving process'
point of view. all events are received in the same manner.
namely. the process receives a wakeup signal whereupon
it looks into the event channel and finds in it the event
indicator. ·

.J

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 3

From the sending process' ·point of view, there are different
classes of events, each class necessitatin~ a different
method of signalling. Events are divided 1nto two classes
by their origin:

a. Process communication
b~ Device signal interrupts

Process Communication Events are internal to memory.
They are generated by the sending process. Consequently,
the sending process is fully aware of the event and of
the receiving process to which the event is to be signalled.
It therefore knows how to access the associated event
channel, and can do so directly. Event channels ~ssociated
with process communication events are called communication
channels.

Device Signal Interrupts are external to memory. They
may arrive at any given moment and interrupt ~ process
that may be running at that time on the processor associated
with the I/O device that originated the interrupt. This
process now becomes a sending process even though it was
not the originator of the event and has no means of accessing
the event channel associated with that event. The only
information accessible to such a sending process is a
table called the ¥evice Signal Table. It contains one
entry per I/0 dev ce. An entry consists of a receiving
process-id and a device-signal-channel. The sending process
looks up the device signal table for the entry corresponding
to the I/O device from which the interrupt originated.
It stores an event indicator in the device signal channel
and calls 11 wakeup'' for the receiving process.

The receiving process has a regular event channel associated
with each device signal channel in the device signal table.
Whenever the receiving process wakes up, it looks up all
the entries in the device signal table which are associated
with it. If it finds a device signal channel that has
been signalled over, it transcribes its contents into
the corresponding event channel. This is done automatically
by the wait coordinator. The user of the wait coordinator
has the impression as if the event indicator associated
with the hardware interrupt has been written into the
event channel directly by the sending process. (For details
see MSPM section BQ.6.07.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ. 6. 03 PAGE 4

There is a further subdivision of Process Communication Events
for reasons of protection

a. Intra-Process-Group Events
b. Inter-Process-Group Events

Intra-process-group events are events which are communicated
between processes belonging to the same Process Group.

Inter-process-group events are events which are communicated
between processes which £Q 091 belong to the same process
groupo

Inter-process-group communications must be controlled
and restricted so as to provide the receiving process
with maximum protection from "unfriendly" processes.

~vent Channels

An event channel is, by definition, a data base that may
be accessed and written by more than one processor at
a time. It therefore needs to be made invulnerable to
the danger of being destroyed through simultaneous multi
processor access. A way is used in which event channels
can be written and read wlthout actually locking the whole
data base and making some process wait until it be unlocked.
It is described in MSPM Section BQ.6.04.

All event channels belonging to one receiving process
are grouped together in a pair of segments ln that process'
directory called the Eveyt Channel Table and the~
Channel Working Queu~. he event channels are maniPUlated
by a set of procedures known as the Eve9t Channel Manager.
The working queue is but an extension o the Event Channel
Table. Unless otherwise specified, the name "Event Channel
Table" wi 11 imply both segments.

A receiving process' Event Channel Table and Event Channel
Manager reside in the administrative ring. All processes
belonging to the same Process Group may access the table
in the administrative ring. Consequently, intra-process-group
events are signalled by calling a ring 1 procedure which
is part of the event channel manager. (The name of this
procedure is set eyent.)

Processes that do not belong to the same process group
are allowed to communicate, but communication must be
severely controlled so as to provide maximum protection
to the receivin~ process. Processes that are allowed
to communicate 1nter-process-group events may therefore
access the receiving process' event channel table only
at a ring 0 level of protection.

MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BQ.6.03

Another problem to be considered is ring protection.
Every event channel is protected by two ring numbers~
.t:l.!l9. and signalling ring~ indicating the lowest level
of protection at which a procedure may access the event

PAGE 5

channel within the receiving and sending processes respectively.

The protection mechanism is explained in detail in MSPM
Section BQ.6.05. The Device Signal Table resides in ring
0 and is in wired down core. It is serviced by the Device
Signal Table Manager.

Jhe Event Channel Table

Each event channel entry in the Event Channel Table occupies
a contiguously addressable zone of virtual memory. All
entries are of the same fixed length and have the same
format. An entry consists of one He;der and two Sub Chennels.
The header contains all the controlnformation associated
with an event channel and is used by the event channel
manager. A sub channel is the part of an event channel
into which a sending process writes an event indicator.
There are two sub channels per event channel table entry.
This is in order to allow safe multiprocessor access to
an event channel. Normally~ one sub channel is always
considered unlocked and a sending process is free to enter
information into 1t. The second sub channel is locked
and is used by the receiving process which reads the event
indicators out of it. ~vhenever the locked sub channel
is exhausted (reset to zero)~ the receiving process switches
the locking status of both sub channels~ thus unlocking
the reset sub channel to future sending processes and
locking the unlocked one so that it could read it.

A sub channel has capacity enough to accommodate only
the most elementary form of event indicator~ which is
the sum of the event count bits. This mode of signalling
is called the Event Count Mode. Event count bits are
internal to the Interprocess Communication Facility and
invisible to the user. One event count bit corresponds
to one signalled event.

If an event is to be signalled giving more precise information~
SiSJnall ing is done by using the Event Queue Mode. In
th1s mode~ a list of event cells is appended to each of
the sub channels. Each cell of the list can contain one
event indicator. This mode allows an event indicator
to consist of an event id and a sending process id in
addition to the (invisible) event count bit. Section
BQ.6.01 explains how to determine an event channel's mode.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 6

An event channel header may be read by any process that has
access to it. By convention, it may be written by the
receiving process only.

Of the two sub channels, unless they both be interlocked
(channel unavailable to a sending process for reasons
of creation or deletion), only one at a time is available
to sending processes which have the right to write into
it.

I.Ve tsb 1 e s t ruc,tu re

The following describes in detail the structures of the
Event Channel Table and the Working Queue. The attached
figures 1 & 2 are the corresponding EPL declarations.

(Note: i terns marked -;': are implementation dependent and
therefore not explained in this section. Items marked ~
are related to the Wait Coordinator and discussed in MSPM
section BQ.6.06.)

The Event Channel Table is a segment consisting of a header
--containing control information-- followed by an array of
fixed length event channel entries.

The event channel table header contains:

a. The receiving process' id.

b.* A pointer to the Working Queue segment.

c.* A pointer to the Event Channel Hash-code Segment. This
segment is used in order to retrieve an event channel
entry by name, using a hash-code algorithm. This segment
is invisible to the user and therefore not described in
this section. (See MSPM section BQ.6.09.)

d. The receiving process' wakeup switch. (See MSPM section
BQ. 6. 04.) ·

e.~ The Wait Coordinator's call-wait priority switch.

f.~ A pointer to the head of the event-call-channel list.

g. A pointer to the head of the device-signal-channel list.

h.X A pointer to the associated-procedure list (see working
queue).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 7

i.* The current dimension of the event channel entry array.

j.* The current dimension of the working cell array.

k .• * The current dimension of the process-group id array.

1.* The length-2 of en event channel table entry.

m.* The length-1 of a working queue cell.

n.* The number of process-group-id pointers in a channel
access ce 11.

o. The event channel entry array.

Each event channel table entry consists of a header followed
by the two sub-channels.

The event channel b~§der contains:

a. The event channel name identifying the event channel.

b. Information associated with· the event channel protection

b1. A pointer to a channel access list in the working
queue segment. If the pointer has the value zero
then. by convention. the channel is accessible to
any sending process that knows the channels' name.
Otherwise. access is granted only to member processes
of process-groups whose ids are entered in this
channel's access list.

b2. Ring number. It is the validation ring number
of the procedure which created this event channel
and serves to protect the channel from being
accessed (other than for signalling purposes) by
procedures residing in lower privilege rings.

b3. Signalling ring number. This ring number is
specified by the procedure that created this
event channel and indicates the lowest privilege
ring from which a sending-process procedure may
access this channel.

c. The event channel's type as seen from a sending or
receiving process' point of view.

c1. Sending type. The type indicates either
coiTITlunication ("O"b) or device signal (" 1"b) channel.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 8

c2.~Receiving type. The type indicates either
event-walt {11 0"b) or event-call (11 1"b) channel.

d. Mode. This is the event channel's signalling mode and
indicates either event-count (11 011 b) or event-queue
(" 1"b) signalling.

e.~ Information associated with event call channels.

e1. A pointer to the associated procedure cell, in
the working queue.

e2. A pointer to the associated data base.

e3. The event call channel level number, which controls
recursive calls to the associated procedure.

e4. The event-call-channel list thread. All event
call channels are linked together in a list structure
for easy searching.

es. The event call channel's merge priority number,
specified by the channel's creator, which indicates
the channel's position within the event-call-channel
list.

f. Information associated with device signal channels.

f1. Device index. It is an index which identifies
the associated entry in the Device Signal Table.
It is internal to, and set up by, the Device
Signal Table Manager.

f2. The device-signal-channel list thread. All
device signal channels are linked together in
a list structure for easy searching.

(In reference to items e4 & f2 note that a single event
channel may be part of both lists concurrently.)

The two sub channels contain:

g. A common header

g1. The sub-channel interlock word. It can assume
the values 0-2 only and is an index pointing to
neither or the currently unlocked sub-channel.

g2. Two usage counters, indicating how many sending
processes are. currently engaged in manipulating
the corresponding sub-channels.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 9

h. The two sub-channels, each consisting of:

h1. Variables used for the event-count mode signalling.
They are plways used by the sending process, the
event-queue mode being an extension of the event-count
mode.

h11. Event-id corresponding to the first ev~nt
signalled over this sub-channel since 1t
was last reset.

h12. Event-count. A count of the events which
have been signalled over this sub-channel.

h2. A pointer to the event queue list in the working
queue. It is used in case of event-queue mode
signalling.

The Working Oueu~ segm~nt contains two arrays:

1. An array of process-group ids
2. An array of working cells.

The process-group ids are in a separate array in order to
keep one entry per process-group (these things are 50
characters long1).

A process-id entry contaJns:

a. An interlock word indicating whether or not this entry
is currently free.

b. The process-group-list thread. A 11 entries are linked
together in a list structure for easy searching.

c. A usage counter indicating how many event channels
have pointers to this entry. When the usage counter
gets reset to zero, the entry is automatically deleted.

d. A 50-character string process-group id.

The working cell erray

There are three types of working cells:

1. Event queue cell
2.* Associated procedure cell
3. Channel access cell

-- ----- --- -----

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.03 PAGE 10

8]1. working queue cells have a fixed format header:

a.

b.

c.

An interlock word, indicating whether or not the cell
is free. The value stored in this location is the index
of the event channel for which the cell is reservedo A
cell with a zero-value interlock word is considered to
be unassigned.

A type. It may assume the values 1-3 to indicate whether
this is an event-queue (1), associated-procedure (2)
or a channel-access (3) cell.

A list thread. Cells are usually linked into list
structures, depending upon the type of cell (as explained
be low).

In addition to the above header. the cells contain:

Event queue c~ll:

d. An event id.

e. A sending process id.

There is one event-queue-list per event sub-channel, provided
that it is an event-queue-mode channel.

Associated procedure cell:

dJr An inhibit word. This word contains the current recursive
call level number of the event call channel that has
caused the associated procedure to be called. A recursive
call will be inhibited unless the calling channel has a
higher level number. .

e.Jt A pointer to the associated procedure's entry point.

f.lt A usage counter indicating the number of event-call-channels
currently associated with this procedure. When the usage
counter resets to zero, this cell gets automatically deleted.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03

8.ll associated-procedure cells are linked to form~
associated-procedure-list •.

~nnel access C@ll:

d. An array of pointers to process-group ids in the
process-group id array.

Normally, there is one access cell associated with each
event channel entry (unless the channel is accessible

PAGE 11

to a 11 processes, in which case there is nc) channe 1 access
cell). If the channel has an access list which can not
be accommodated in one access cell, additional cells are
appended to form a channel-access-list.

MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 12

Declaration of the Event Cb;annel Table hea~r

declare 1 ev_chn_tbl ctl(my_ect),
2 rec_prcs bit(36),
2 my_wrq pointer,
2 my echt pointer,
2 wakeup bit(1),
2 c l_wt_prior bit { 1),
2 cl_list fixed bin(17),
2 dev sigl list fixed bin(17),
2 ass:Prcd:list fixed bin(17),
2 ect_dim fixed bin(17)
2 wrkq_dim fixed bin(17~,
2 ids_dim fixed bin(17),
2 entr_rest fixed bin(17),
2 cell rest fixed bin(17),
2 grp_Td fixed pin(17),

I* Declaration of the ECT entries array *I
2 ent r(my ect ~ev chn tb 1 .ect dim),

3 name bit(70), - - -
3 rest (my_ect~ev_chn_tbl.entr_rest) fixed bin(17)J

Declaration of an Eyent Chsnnel Table entry

declare 1 chn ctl(my_ect),

l''r The event channe 1 header *I
2 hdr

3 name b i t (70),
3 ace,

4 ptr fixed bin(17)
4 ring fixed bin(17~,
4 signl_ring fixed bln(17),

3 type, .
4 send bit (1),
4 rec bit (1),

3 mode blt(1),
3 ev_cl,

4 p_ptr fixed bin(17),
4 d_ptr pointer,
4 level fixed bin(17),
4 list fixed bin(17)
4 prior fixed bln(17~,

3 dev signl, ·
4 inx fixed bin(17)
4 list fixed bin(175,

Figure 1

The Event Channel Table

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.03 PAGE 13

I* The two sub-channels */
2 intlk, .

3 word fixed bin(17),
3 use(2) fixed bin(17),

2 sub (2),
3 ev_id bit (70).
3 count fixed bin(17),
3 queue bit(36);

Figure 1 (continu-;dl

The Event Channel Table

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ .6.03 PAGE 14

[>eclaretiqn of, the Event Channel Table Working Queue

declare 1 wrk_q ctl(my_ect),

I* The process-group id array *I
2 ids (my ect • ev_chn_tb 1. ids_dim),

3 intlk bit(36),
3 list fixed bin(17)
3 usage. fixed bin(175t
3 grp_id character(SOJ,

I* The working cell array */
2 ce~ 1 (my_ect •ev_chn_tbl.wrkq_dim),

3 1ntlk bit(36),
3 rest (my_ect ... ev_chn_tbl.cell_rest) fixed

bln(17);

Declaration of tbe thr~e cell structures

I* The event-queue cell *I
declare 1 ev_q ctl(my_ect),

2 intlk bit(36),
2 type fixed bin(17),
2 list bit(36)t
2 ev_id bit (70),
2 send_id bit (36);

/*The associated-procedure cell *I
declare 1 ass_prcd ctl (my_ect),

2 intlk bit(36),
2 type fixed bln(17),
2 list bit(36),
2 inhib fixed bin(17),
2 ptr pointer,
2 usage fixed bin(17);

/*The channel access cell */
declare 1 ace ctl(my ect),

2 intlk bit('!6),
2 type fixed bin{17),
2 list b!t(36),
2 group_id(my_ect .-ev_chn_tbl.grp_id) fixed bin(17);

Figure 2

The Working Queue

