
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.04 PAGE 1

Published: 07/27/67

Identification

The Event Channel Manager
Michael J. Spier

Purpose

This section describes the Event Channel Manager which
resides in the Administrative ring~ and whose main functions
are to create, maintain, delete~ write into and read out
of event channels. Special emphasis is put upon the relationship
between two of the Event Channel Manager's modules, read
event and set event, which work in con~unction with one
another accord1ng to a special convent1on so as to permit
interlock-free multiprocessor access to an event channel.

Note: It is essential to the understanding of this section
that the reader be acquainted with MSPM Section BQ.6.03
which explains in detail all the terms used in the following
discussion. Mention is made of the wait-coordinator,
event-wait channels and event-call channels. These terms
are associated with the reception of event signals and
are explained in MSPM Section BQ.6.06. To briefly summarize,
the wait coordinator is a procedure which is called by
a receiving process when the latter can no longer continue
its execution unless a specific event (or one out of a
list of several events) has happened. The wait coordinator
looks into the specified event channel to see whether
that event has occurred. If yes, it returns to its caller
otherwise it calls the block entry in the traffic controller.
The receiving process will then wake up as soon as a sending
process signals the event over the event channel. (It
should be remembered that the signalling of an event signal
over an event channel includes a call to wakeup for the
receiving process.)

Introduction

As mentioned in MSPM section BQ.6.03, event channels may
be simultaneously accessed by processes that are concurrently
running on different processors. Event channels (and
the two procedures responsible for writing and reading
them) are defined in such a way that multiprocessor access
to one single event channel can be carried out simultaneously.
This interlock-free access is of interest not only because
of the evident gain in time but mainly because of the
fact that an event channel may be accessed by a rin~ 0
procedure that does not tolerate blocking for indef1nite
periods of time.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.04 PAGE 2

There are two different types of races between processes
which access an event channel simultaneously:

a.

b.

A race between several sending processes. It is
taken care of by the set event procedure and (as
will be seen) requires n~ special interlocking
mechanism.

A race between a receiving process and one or
more sending processes. This kind of race is
taken care of by the read_event procedure and does
require an interlocking mechanism, namely the
switching of the two sub_channels.

The logic of the two sub channel systems is the following:
If both sub channels are locked, the whole event channel
is considered as being inaccessible. Both sub channels
must never be unlocked simultaneously. Under normal conditions,
one sub channel is always unlocked. A sending process
may access such a sub channel provided that it take the
following precautions (in the indicated order):

a. Ascertain that the sub channel is unlocked.
b. Increment the corresponding usage counter.
c. Verify that the interlock word has remained unchanged.

If conditions a and c are true, it may safely proceed
to put its event indicator in the sub channel. If condition
a is false it tries the second sub channel. If condition
c is false, it means that the sub channel had in the meantime
been locked by the receiving process, in between steps
a and c. It decrements the usage count and tries the
second sub channel, after having sent a wakeup signal
to the receiving process.

A receiving process that wishes to read an event channel
will always attempt to read the locked sub channel. If
it finds it empty (reset) it will switch channels by switching
the interlocking indicators in the interlock word. It
then looks into the newly-locked sub channel to see whether
the usage count is zero. If it is, it considers the sub
channel to be safe for manipulating. If it is non-zero
this means t.hat there is sti 11 some sending process working
on that sub chan~el. The receiving process considers
this condition to be the equivalent of a "signal not yet
arrived" and will attempt to read the sub channel at a
later time.

~- ------ ---~-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.04 PAGE 3

An event signal is read by decrementing the locked sub
channel's event count and (if it is an event-queue-mode .
channel), by detachingthe first cell from the event-queue-list.
A sub channel is considered to be rese1~ if the event_count
is equal to zero.

Following is a detailed discussion of ~ .. et_event and read event.
The flow charts of both these procedure·s, figures 1 and 2,
are provided as a reference.

Set event

A sending-process may send an event signal to a receiving
process by calling the event channel manager entry set_event:

call ecm$set_event(rec_prcs,ev_chn,ev_id,sts)

declare (rec_prcs,sts) bit(36),(ev_chn,ev_id) bit(70);

where rec_prcs is a process id

ev_chn is an event channel name

(Note: It is assumed that initial (basic interprocess)
communication has been established between the receiving
and sending processes, and that the sending process knows
both the receiving process' id and the event channel name.
Basic interprocess communication is discussed in MSPM
sections BQ.6.00-01.)

ev_id

sts

is an event identifier (see BQ.6.03), known
to or generated by the sending process.

is a 36 bit string specified by the caller into
which set_event puts return status information.

A sending process is supposed to know the process id of
a receiving process to which it wishes to send event signals.
It may know it either implicitly or be informed of it
by the receiving process via the basic interprocess communication
mechanism. It m not use t e Int r recess Commu ication
Facility unless it nows oth grocess d and event channel
name. The event channel name will allow it to access
the correct event channeT within the receiving process'
event channel table. The event channel table of a process
is always known in that process' directory under the symbolic
name <ect>. A process may access its own by using this
symbolic name.

..

MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BQ.6.04

A sending process may access a receiving process' event
channel table (provided that he have access rights to
it) by using the path name

root> pdirdir > [receiving process id] > ect

PAGE 4

When set event tries to access, for the first time, a
receiving process' event channel table or an event channel
within that table, it knows them by symbolic name only
(event channel table path-name, event channel name) and
has to call upon modules which convert these symbolic
names into machine~language pointers. Such conversions
require considerable time, therefore they are done only
for the very first access. The acquired pointers are
then entered into an associative-memory type table (similar
to the GE-645 associative memory register) which is consulted
whenever set event tries to access an event channel.
This organization considerably accelerates the retrieval
of a frequently accessed event channel. This speedup
in access time is especially interesting to the I/0 system
which relies heavily upon the interproc,~ss communication
facility. (For details consult MSPM section BQ.6.09.)

The accessibility of an event channel to a sending process
depends upon that process' access rights to the receiving
process' event channel table as well as upon the sending
process' and sending procedure's access rights to specific
event channel within that table. Event channel protection
is described in MSPM section BQ.6.05.

As described above, set_event looks at the sub channel
interlock word. If both sub channels are locked the whole
event channel is inaccessible to a sending process and
an error return is made. When an accessible sub channel
is found, set_event increments the usage counter by one,
stores the event_id into the sub channel by a STAC instruction
and increments the event count field with an add to memory
type instruction (AOS). If the channel's signalling mode
is the event queue mode, set_event reserves an empty cell
in the Working Queue, writes the event indicator into
the cell and then hooks the cell up to the end of the
sub channel's event queue list.

This operation may be performed upon one sub channel by
more than one sending process at the same time.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.04 PAGE 5

After having successfully put an event indicator into
an event channel, set event decrements the sub channel's
usage count. It then-sends a wakeup signal to the receiving
process and returns to its caller. The call wakeup(rec_prcs)
is controlled by the event wakeup switch located in the
Event Channel Table Header. This one-per-receiving-process
switch is usually "ON", indicating that set_event should
call wakeup for the-receiving process.

'Nhen a process is quit by another process, the quitting
process sets this switch to the "OFF" position, thus insuring
that the quit process be not awakened by some sending
process. Set event does not call wakeup (receiving_process),
when that switch is "OF)"· This does not interfere with
Interprocess Communicat on, it simply means that all arriving
event indicators queue up in their respective event channels
and are not immediately recognized by the receiving process.
(See corresponding calls at the end of this section.)

We have described set_event functionally. Its implementation
is somewhat more complicated due to reasons of protection
;;md is discusse_d in MSPM section BQ.6.05.

Read eyent

The receiving process (when executing in the wait coordinator)
reads the contents of an event channel by invoking the function

f=ecm$read_event(ev_chn,ev_ind,sts)

declare (ev_chn,ev_ind(3)) bit(70), sts bit(36)J

where ev_chn is an event channel name

ev_ind is a three element array, specified by
the caller into which read event puts the
event indicator read out of the event
channel. It includes:
ev_ind(l)=event channel name
ev_ind(2)=event id
ev_ind(3)=sending process id (36 bit string).

sts return status information.

The function f returns the value "1''b if an event indicator
was successfully read out of an event channel, otherwise
it returns the value "O"b. The status return reflects
the specific reasons of failure for f="O"b.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.04 PAGE 6

we refer to the f="O"b condition as the ''no results" condition.
It is usua 11 y interpreted as imp 1 y ing "nobody signa 11 ed
over this event channel".

Read event is the event channel manager's counterpart
to, and functionally associated with, the set_event procedure.
the basic difference between them is that set event may
be directly accessible to any sending process7 procedure
(and even receiving process procedures) whereas read event
can be invoked by the receiving process' wait coordinator
only. (See section BQ .6.06.)

Read event looks into the locked sub channel. If there
is information in it it proceeds to read it, otherwise
it switches the sub channels' interlock status. If the
newly locked sub channel is empty as well, a ''no-results"
return is made. Once that a non-empty locked sub-channel
has been found, read_event checks the usage counter of
that sub channel. Any non-zero value of that counter
indicates that some sending process is still working on
that channel, and is interpreted as a "signal not yet
arrived'• condition which causes a "no-results" return.

When read event has found an accessible, non-zero sub
channel, Tt reads one event indicator by decrementing
the event_count ana-by detaching the first cell of the
event channel queue if the channel's mode is the event
queue mode. When the event count has been reset to zero,
the channel is considered to be empty.

The information returned by read_event in the event indicator
array depends upon the event channel's signalling mode:

event-count-mode (mode="O"b) ev_ind(1)=event channel name

ev_ind(2)=event id of the first
event to have been
signalled over the read
sub-channel after the
latter was last reset to
zero.

ev_ind(3)=0

event-queue-mode (mode=' 1 1"b) ev_ind(1)=event channel name

ev_ind(2)=this event's id

ev_ind(3)=sending process id for
this event.

,,....,
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.04 PAGE 7

~reate ev chn

A receiving process creates a new event channel by calling:

call ecm$create_ev_chn(ev_chn,mode,;ignal_ring)

declare ev_chn bit(70), mode bit(1), signl_ring fixed bin(17);

where ev_chn

mode

signl_ring

is a location, specified by the caller, into
which create ev chn puts the name of the
newly created channel.

is the channel's signalling mode
11 O"b=event-count-mode
"1"b=event-queue-mode

is a ring number (0-63), specified by the
caller, which corresponds to the lowest
privilege ring from which a sending process'
procedure may access this event channel.

The event channel thus created has the default attributes
()f a communi cat ion event-wai t-channe 1. 1\ccess to it is
restricted (by default) to member processes of the receiving
process' group. (See MSPM section BQ.6.01.)

Decl§ration cell~

The following calls provide the means of declaring the
event channel's type attributes and of granting access
to the channel to process-groups other than the receiving
process' group.

an event-channel is declared to be an event-call channel by
calling

ecm$decl ev_call_chn(ev_chn,proc_ptr,data_ptr,prior,
leveT,sts)

declare ev chn bit(70), (proc_ptr,data_ptr) ptr, (prior, level)
fTxed bin(17), sts b1t(36);

where ev_chn is the event channel's name

proc_ptr is a pointer to the associated procedure's
entry point

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ .6.04 PAGE 8

data_ptr

prior

level

sts

is a pointer to a data b~se associated with
the event ca 11

is a merge priority number which determines
the place in the event-call-channel-list into
which this channel is to be linked. The values
assi~ned to prior are determined by the user
who 1s expected to know what he is doing.

is a level number used to inhibit recursive
calls to the associated procedure from out of
the wait coordinator. Any attempt to call the
procedure recursively is validated by the wait
coordinator only if the level number of the
event-call-channel associated with the attempt
is higher than the level number currently
assigned to the associated procedure. Whenever
a procedure is called by the wait coordinator~
it gets assigned to it the level number of the
associated event call channel. The value of
level is determined by the user~ as is the
case for prior.

return status information.

Before accepting this call, decl ev call chn checks with
the f-ile system to make sure that its caTler is not trying
to circumvent the system's protection mechanism« by declaring
an event call channel so that he could indirectty call
a procedure which is directly inaccessible to him. The
call to decl_ev_chn is rejected if it turns out that ass_prcd
may not be accessed from the caller's ring.

call ecm$decl_ev_wait_chn(ev_chn,sts)

declare ev_chn bit(70)~ sts bit(36);

where ev_chn is an event channel name

sts is return status information

disassociates an event-call-channel from its associated
procedure and changes its type back to event-wait-channel.
It does nothing if ev_chn points t9 an event-wait-channel,
contrary to decl_ev_call_chn which always accepts legal
calls, even for channels which already are declared to
be event-call-channels, allowing channel reassociation
to a different procedure.

MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.04 PAGE 9

Communication channels (which may be event-wait or event-call
channels) are automatically coupled to device signal channels
in the Device Signal Table when the user requests an I/O
device. The channel is created in the normal manner,
then associated with the I/O device by the Device Signal
Channel Mana9er who puts a device index (the index of
the device s1gnal channel in the Device Signal Table)
into the event channel header. The Device Signal Manager
is described in MSPM section BQ.6.D7.

call ecm$give_access(ev_chn,acc_sw,acc_list)

declare ev_chn bit(70), acc_sw bit(1), acc_list(n)
character(SO);

where ev_chn is an event channel name

acc_sw is a switch which determines the procedure's
function
''O'b=delete channel access list and make channel

accessible to a 11 (the acc_l i st argument is
ignored)

"1"b=append acc_list to channel access list

acc_list is a list of 50-character process-group ids

grants access rights to all processes in the system or to
member processes only of the process groups specified in
acc_list, depending upon the state of acc_sw.

Delet ev chn

The ca 11

call ecm$delet_ev_chn(ev_chn,sts)

declare ev_chn bit(70), sts bit(36);

where ev_chn is an event channel name

sts is return status information

will have that channel deleted. The return status information
will reflect the fact that the channel mlght have been deleted
while still containing unread event indicators.

: /"'""'-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ. 6.04

Calls associated with the wait coordina\Qr

The declaration calls

call ecm$set_call_prior

call ecm$set_wait_prior

PAGE 10

set the receiving process call-wait-priority switch
(cl wt_prior in the event channel table header) to 11 111 b
or Ti011 b respectively.

The call to ecm$get_dev_signal(dev_signl_chn_list)

where dev_signl_chn_list is an index of the format fixed
bin(17) which points to the beginning of the device-signal
channel-list

is made by the wait coordinator prior to any event channel
interrogation in order to have the contents of the device
signal-channels in the device signal table transcribed
into their corresponding associated event channels. (See
MSPM section BQ.6.06.)

Calls associeted with the quitting process

When a process quits another# it wants to set (and eventually
reset) the quit process' wakeup switch.

call ecm$set_wakeup_sw(prcs_id#sw)

declare prcs_id bit(36)# sw bit(1);

retrieves the target process' (pres id) event channel table,
and sets the wakeup switch in that table to the value !'sw".

call ecm$read_wakeup_sw(prcs_id,sw)

returns in "sw'' the current value of the target process'
wakeup switch.

-1 to

I set event t

find eLent channel
in event channel table
of the,receiving process.

check access ctl
and protection level

NO

YES

YES
put event indicator
in sub-channel header

NO

put event indicator
in event queue cell

I
hookup cell to
event queue list

-1 to
usage counter

"OFF"

RETURN

I
Figure 1: Set event

set
"channel unavailable"

return

.. ~

!"""'

' ,.......

MULTICS SYSTEM-PROGRAMMERS' MANUAL

YES
=0

NO I>O
switch

sub-channel
'nterlock

NO
>0

NO --··- ~ -... -·--"' ·- '

get contents
of first event
queue 1cell

correct links
I

return empty
cell to pool

-1

,
to

event count

NO
>O

reset
sub-channel

·I~
RETURN

I

Figure 2: Read event

SECT 1 ON BQ • 6. 04 PAGE 12

set
"signal not yet arrived"

return

