
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.05 PAGE 1

Published: 07/25/67

Identification

The lnterprocess Group Event Channel Manager
Event channel protection
Michael J. Spier

Purpose

A number of event channel manager modules reside in the
hardcore ring rather than in the administrative ring and
are collectively known as the lnterprocess Group Event.
Channel Manager (IPGECM).

One of these modules (set_event) is implemented in ring
0 for reasons of protection (access privileges to event
channels), the others are functionally required to reside
in the hardcore ring.

All IPGECM modules have one thing in common in that they
all handle interprocess group communications, contrary .
to the ring one ECM modules which handle interprocess
communications within the receiving process' group only.

This section covers two topics, it discusses the problems
associated with event channel protection and the solutions
adopted, then defines the modules of which the IPGECM
is comprised.

The reader is assumed to be familiar with lnterprocess
Communication as described in MSPM sections BQ.6.00-04,06
as well as with the ring protection mechanism, MSPM sections
80.9.00-01.

The Eyent Channel Table protection

A receiving process' Event Channel Table (by this term
we refer to both segments) is located in the administrative
ring. It is manipulated by the Event Channel Manager
which resides in the same ring. All Event Channel Manager
Modules (including set_event) reside in the administrative
ring. A receiving process' Event Channel Table is known
to and accessible by all processes which belong to the
same Process Group at a ring 1 level of protection. The
same table may be made accessible to a sending process
that does not belong to the same Process Group as the
receiv1ng process, yet it will be made accessible to such
a process at a ring 0 level of protection only. The only
way a sending process may access a receiving process'

' i I

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION 60.6.05 PAGE 2
I

EventChannll Table is by calling set_event. Consequently,
lnterproces. group communication must be handled by a
ring 0 copy of the ring 1 set_event procedure.

A sending ptocess"' access to the Event Channel Table is
subject to the File System's Access Control. We therefore
may assume that qnly processes that have an agreement
with a consenting receiving process will actually gain
access to i~s Event Channel Table, and this in either
ring 1 or ring 0 depending upon the sending/receiving
processes"' process-group relationship.

I .

We must now iconsi1der the fact that a sending process is
not interested in a collection of segments known as the
Event Channel Table, but rather in a data structure within
these segme~ts that is the event channel.

The Eyent Chi""'' 8c,ess Contr9l

A sending process which has gained access to the Event .
Channel Table may, theoretically, write information into
~event channel.within that table. We say theoretically,
because in order to do so he must be In possession of
the event channel name which is a unique bit string.
Still, that 1possibility exists, and consequently individual : ·
channels have to be protected from being accessed by unauthorized
sending processes. This is done by checking the event .
channel's channel-access-list which c9ntains the process-group-ids
of the sending processes which are allowed to signal over
that event channel. A convention is made by which a zero-value
access cont ro 1 11 st imp lies that any process which knows I
that channel's event channel name may signal over it.

Event channels are thus doubly protected by both the unique
event channel name and the channel-access-list. 1

To summarize the scheme of protection as discussed 1 this far: 1

1. There is an overall Event Channel Table protection ,
in conjunction with a sending process"' Process Group
affiliation. Interpr9cess group communication is
carried out at a ring 1 level of protecti~n,
interprocess group communication at a ring 0 level
of ·protection.

I

2. A sending process must have the receiving process' I
permission to access its Event Channel Table (File
system's Access Control).

I

MULT.ICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.05 PAGE 3

3. A receiving process must willingly ·allow a sending
process to access a given event channel by

a. Communicating to him the channel's event
channel name, and by

b. Putting him on the event channel's access list.

At this point! a receiving process ... event channel is protected
from unauthor zed access by other processes. We must
now determine which procedures may signal over an event ·
channel when the process they belong to has been granted
access to the event channel.

Ring number validation level

The request for the creation of an event channel (call
ecm$create_ev chn) is initiated by a procedure belonging
to the receiving process. Such a procedure resides in
a given protection ring. We make the convention that
the newly created event channel must be protected -- within
the receiving process -- by the creating procedure's validation
ring number and -- within the sending processes -- by
an arbitrarily specified signalling-ring-number.

For example, every process has a number of event channels
dedicated to events which are an integral part of the
Multics system and of great importance to the existence
and proper functioning of the process. Suchchannels,
dedicated to system events like 1/0 interrupts, regul~r ·
or automatic logout, device hangup etc. must be protected
from being signalled over by unauthorized procedures.
Furthermore, ·some of these channels are used in order
to signal events which are "disagreeable" to a system
user. Such a user, not respecting system conventions,
may try, from his own ring, to delete such event channels
and thus sever important system control communications.

sv~nt channel creation

Create_ev chn (described in MSPM section BQ.6.04) can
be directly called by any. procedure within a receiving
process. It gets the caller's validation ring number
from sbf3 and stores it in the created event channel.

Any subsequent call to an ECM or IPGECM module ·(other
than set_event) is validated in conjunction with this
ring number. No procedure, calling from a lower privilege
(outer) ring is allowed to access the event channel in ·
any way.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6·.os PAGE 4

(Note: If the creating procedure wants the event channel
to be accessed from rings of lower privilege than the
one it resides in. it has to set its validation ring number
accordingly before invoking create_ev_chn.)

In its calling sequence. create_ev_chn has an argument
called 11 signalling-ring" which may assume any of the values
0-63. The value of this ring number is arbitrarily determined
by the creator and corresponds to the lowest privilege
ring from which a sending process' procedure may access
the channel (via set_event).

S~t e~nt

As mentioned in the introduction to this section, set event
(described in MSPM section BQ.6.04) exists in two copTes.
One -- named ecm$set_event -- resides in ring 11 the other
-- named ipgecm$set_event -- resides in ring o.
When a procedure (other than a ring 0 procedure) wants
to signal the occurrence of an event to a receiving process,
it calls ecm$set_event which checks the receiving process'
id against a ring 1 list which contains all the ids of
this group's member processes. It can thus determine
whether this is an intra- or inter-process group communication.

If it is an intra-process group communication, it retrieves
the event channel in the receiving process' event channel
table, checks for a possible ring access violation and
only if the caller had the right to request signalling
over this channel does ecm$set event proceed to the actual
writing of an event indicator Into the event channel.

If it is an inter-process group communication, set event
knows that the receiver's event channel table is (by hardware)
inaccessible to it. It therefore passes the ca 11 a long
(having assumed its caller's validation ring number) to
ipgecm$set event in ring o. The ring 0 copy of set_event
first checks to see whether or not the sending·process#
group is allowed to signal over this event channel (channel
access list), then goes through the same checking and
signalling process as qoes ecm$set_event.

Other IPGECM mogule~

Thus far, we have discussed the ring 0 copy of set event.
Two of the Event Channel Manager's procedures originally
reside in ring o. These procedures are dedicated to device
signal communications and must reside in the hardcore
ring for two reasons:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.05 PAGE 5

a. All device signal communications are, by definition
(see MSPM section BQ.6.03) Inter-process Group
Communications;

b. These procedures must have access to the Device
Signal Table that is wired down in ring o.

These procedures are described in detail in MSPM section
BQ. 6. 07.

call IPGECM$link_dev_chn(ev_chn_name,dev_index)

effects the coupling of the specified event channel with
a device signal channel, located in the Device Signal
Table and identified by dev index, then hooks the event
channel up to the device-signal-channel-list in the Event
Channel Table.

call IPGECM$unlink_dev_chn(dev_index)

looks up the device-s1gnal-channel-1ist and uncouples the
event channel associated with dev_index from the corresponding
device signal channel.

