
/I" .. MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.08 PAGE 1

Published: 08/07/67

Identification

The give-call facility
Michael J. Spier

Purpose

The 11 give-call 11 faci 1 i ty is an extension of the Interproc. s.;
Communication Facility. allowing procedure to procedure
calls to be made over process boundaries between member
processes of a process group. Give-call allows calls
to be made to arbitrary procedures (within certain limitations
of ring access privileges and segment access rights) in
the same way in which calls are made between procedures
of the same process.

It is assumed that the reader is well acquainted with
the Interprocess Communication Facility as described in
MSPM sections BQ.G.00-07. In order to avoid misunderstanding
it should be remembered that there is no conceptual relationship
between the give-call facility and event-call-channels
(even though both happen to have the word 11 ca11 11 as part
of their name) but rather that give-call. as a user of
Interprocess Communication. may or may not make use of
such event channels.

Int reduct ion

It is sometimes necessary for some process to assume control
of another process. A typical example is that of an overseer
process which creates a working process and wants to control
the latter~s initiation. Another example is that of a
process which wants to have some task (e.g •• matrix inversion)
executed for it in parallel by another process.

Give-call was designed to perform such calls over process
boundaries and provides (within the limits of certain
restrictions discussed in the implementation) the following
services: .. .

a. Allows the calling of an arbitrary procedure. ,
known by its path name. within the called process.

b. Allows the called procedure to 1irectly access the
call arguments (within the call ,g process).

c. Provides appropriate handlers f< r condition signalling
and abnormal returns.

' -
''

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.08 PAGE 2

d. Simulates a return from the called procedure by
ending an event signal to the calling process
over an agreed-upon event channel.

The above-stated may seem to be very complicated, but
in fact give-calls are as straightforward and as easy
to make as calls which are internal to a process, the
only major difference being the simulated return, imposed
by the parallel processing aspect of give-call.

To return to the above-mentioned example of an overseer
process which wants to initiate a newly created working
process, the latter is blocked in Its Walt Coordinator,
awaiting an event signal over an event channel dedicated
to the give-call facility.

The overseer process (11 calllng process") issues a give-call
to a procedure within the working process ("called procedure").
The give-call facility sends an event signal to the called
process over the dedicated event channel, causing the
called process to wake up in Its Wait Coordinator and
call the called procedure on behalf of the calling process.

The give-call facility is composed of two modules, named
gvclf$glve call and gvclf$pass_ca11 (both In ring 1),
which are Tnterposed between the Interprocess Communication
Facility and the calling and called procedures respectively.
The glve_call procedure copies the necessary Information
associated with the interprocess call into a data base
shared by both processes (known as the ''give-call table"
(gvclt)) together with an event id for future identification,
and then sends an event signal to the called process over
the dedicated event channel. The called process receives
the event signal and transfers control to pass_cal_l.
Pass_call retrieves the information in the give-call table
(by matching it with the received event id), generates
a calling sequence to the called procedure and invokes
the latter in the normal manner. Upon return, pass_call
sends the calling process an event signal over an event
channel (whose name it finds in the give-call table) in
order to inform it of the completion of the give-call,
and re.turns control to the Wait Coordinator.

Oyerviim

The give-call facility is designed to all ~ interprocess
calls to be made in the same manner as ca s which are
internal to a process. It imposes upon tt.: caller a somewhat

,.

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION 80.6.08 PAGE 3

different calling sequence (explained in the implementation),
but accepts as called procedure any arbitrary procedure
in the called process, allowin~ it to be completely unaware
of whether the call came from 1nside or outside of the
process it belongs to.

The following conventions must be followed in conjunction
with the give-call facility:

a. Give-calls are legal only between member proces~e:..
of a process group.

b. Give-calls can be made from and to procedures in
rings 1-63 (ring 0 procedures do not use this
facility).

c. Even though a give-call is handled by ring 1
procedures (give_call and pass_call), the actual
call to the called procedure emanates from the

d.

ring on behalf of which the give-call was initiated.

The list of arguments for the called procedure must
contain pointers to the arguments# symbol table
entries (see MSPM section 80.1.00).

The give-call facility#s primary task is that of "normalizing"
the argument pointers when it passes the called procedure#s
argument list from the calling to the called process.
It converts only the argument pointers in the argument
list (including specifiers). No attempt is made to pry
any deeper and convert process-dependent information (such
as pointer or label variables). As a rule, only arguments
recognized as legal by the ring-crossing mechanism (see
80.9.01-03) are validated and, -- as an additional restriction
-- no process-dependent information should be used as
a give_call argument.

Implementjtion

Procedure a of process A wants to issue a give-call to
procedure b of process B. The calling procedure knows
the called process# ld (prcs_b_id), the called procedure's
calling name (symbolic character string name of the form

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.08 PAGE 4

"sqrt" or "function$sine") and its arguments (a ,a , ••• ,a).
Process A creates an event channel (rtn chn) over which
it is going to be notified that the calTed procedure has
returned, and then calls

gvc 1 f$gi ve_ca 11 ("proc_b_name•• ,prcs_b_id, rtn_chn, stat_rtn,
a ,a , •• ,a)

where stat_rtn is a location, specified by the caller, int
which give_call puts return status information.

Give call has the name of one of process B~s event channels
(giv-call chn) which it knows to be dedicated to the give
call-Facility. Furthermore, process A has a single event-call
channel (giv_call_rtn) dedicated to returns from called
procedures and associated with the give_call procedure
(not to be confused with rtn_chn).

(Note: There is only one (if any) giv_call_chn and giv_call_rtn
channel per process.)

When called in the above-described manner, give_call goes
through the following steps:

a. It separates its own (first four) arguments from the
called procedure~s arguments.

b. It opens a new entry in the give-call table into which
it puts a newly-generated event id (for table entry
identification) and giv_call_rtn. It also stores
rtn_chn in this table entry, although not for immediate
use.

c.

d.

e.

f.

It asks the Segment Management Module for procedure b~s
path-name, which it stores in the table entry together
with procedure a~s validation ring number, obtained
from sb 13.

It reconstructs a new argument list from the remaining
(called procedure~s) arguments and invokes a module
which converts each pointer into a path-name/relative-
pointer pair, to be stored in the table entry.

It then calls set event and sends process Ban event
signal over its gTv_call_chn, specifving the same event
id which was stored in the give-call ~able entry.

Give_call returns to its caller.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.08 PAGE 5

Process B receives (in one of the two ways described below)
the event signalled over its giv_cal!_chn and, knowing
the event channel to be associated w1th the give-call
facility, transfers control to pass call. This transfer
of control depends upon giv_call_chn's receiving type.
If it is an event-call channel having pass call as its
associated procedure, the event will be detected and control
automatically transferred to pass_call w~en process B
executes in the Wait Coordinator. This 1s the usual way
of receiving give-call event signals.

It is also possible for giv_call chn to have the event-wait
type attribute and to have one of process B's procedures
(other than procedure b) wait for an event to be signalled
over it. In that case, upon return from the Wait Coordinator,
this procedure calls

gvclf$pass_call(gvclt_ptr,ev_ind)

where gvclt_ptr is a pointer to the process' give-call table
and ev_ind 1s the event indicator returned by the Wait
Coordinator.

Pass_call goes through the following steps:

a. It finds the current give-call table entry by matching
the received event id with the stored one.

b. It calls the conversion procedure which reconverts the
path-name/relative-pointer pairs into a standard Multlcs
list of arguments.

c. The called procedure's path-name is converted into a
pointer.

d. Pass_call generates a calling sequence to the called
procedure. This calling sequence is generated in a
segment which resides in the calling procedure's ring.
Pass call declares itself as handler for access violation
and unclaimed signals (see MSPM section 80.9.01) and
invokes the generated calling sequence. This mechanism
insures that the actual call to procedure b will always
emanate from the calling procedure's ring, providing
the called procedure with actual hardware protection.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.08 PAGE 6

Upon return from the called procedure. the generated calling
sequence returns to pass_call. which does the following:

e.

f.

g.

h.

It deletes the generated calling sequence.

It puts return status information into the current give
call table entry (for example. information associated
with intercepted access violation or unclaimed signals).

It then sends the calling process an event signal over
giv_call rtn specifying the same event id used before
(for tabTe entry re-identification).

Pass_call returns to its caller.

The calling process receives the event signal over giv_call_rtn
and transfers control to give_call (remember that giv_call_rtn
is an event-call channel associated with give_call). which
finds the current table entry. retrieves the returned
status information and deletes the entry. It then sends
the calling procedure an event signal over rtn_chn (note:
in this case the event is signalled and received within
the same process) and returns to the Wait Coordinator.

Protection

The ring protection problems associated with the give
call facility seem at first to be rather complex. The
whole Facility is nothing but a mechanism which is invoked
to re-issue a call on behalf of a procedure which resides
in a given protection ring. The call is re-issued from
the administrative ring which has considerable access
privileges. The Facillty could thus be used by some "unfriendly"
procedure as a means of circumventing the system's protection
mechanism. This possibility is excluded by having pass_call
invoke the called procedure from the calling procedure's
ring. Now another problem arises. namely if an access
violation happens to occur. it is the ca11ed (rather than
the calling) process which "suffers punishment." It is
for this reason that pass call declares itself as handler
for access-violation conditions. If such conditions are
intercepted. pass_call signals them to the calling process.
which may then invoke its own appropriate handlers.

A I . MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.08 PAGE 7

Initial Implementation

In the Initial Multics implementation, give_call is restricted
as follows:

a. It may only be used by administrative ring procedures,
although possibly to make outward calls to user ring
procedures.

b. PL/1 signals may not be invoked by the called procedur~.

c. No arguments may be passed.

