
MULTICS SYSTEM-PROGRAMMERS"' ~NUAL SECTION 8;).6.09 PAGE 1

Publisheda 10/05/67

Identificatign

Event Channel Manager Primitives and Channel Access Techniques
Michael D. Schroeder

Purpose

This MSPM section describes the methods used by the Event
Channel Manager (ECM) to maintain and access event channels.
The ECM"'s associative memory is defined, as is the "hashing"
algorithm which operates on the Event Channel Table (ECT).
Primitives for creating, retrieving, and destroying event
channels and Working Queue (WRKQ) cells are also described.
This section wi 11 be primari 1y of interest to system progranvners
who are maintaining or modify ng the Event Channel Manager.
It is important to note that the ring 0 version of the .
ECM, the IPGECM, does not use the same primitives and
access techniques. Important differences are explained
in BQ.6.05.

Introduction

Familiarity with MSPM section BQ .6.00 through BQ .6.08
is assumed.

As indicated in section BQ.6.00, a sending process knows
the target event channel by two symbolic labels: the
process id and the event channel name. Using these, the
sending process must locate the ECT segment of the receiving
process, and then find the indicated event channel within
that segment.

The Segment Management Module primitive initiate (80.3.02)
is called to convert a path name constructed from the
symbolic process id to a pointer to the proper ECT segment.
Because the ECT segment is always known by the symbolic ·
name 11 ect11 within any process directory, the path name

11 root>pdi rdi r>[process id]>ect''

uniquely identifies the ECT segment within the Multics
file system. (Note that process id is the only variant
in this path name.) The ECT segment identified by the
path name is "made known" to the sending process, and
a pointer to the base of the segment is returned. The
receiving process"' ECT may now be accessed directly with
this pointer.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.09 PAGE 2

The remaining task is to locate the proper event channel
within the found ECT. This is done by searching that
ECT for a matching event channel name. The search is
expedited by the use of a 11 hashlng" algorithm. The search
procedure is part of the sending process~ ECM. but the
data base searched is the actual ECT of the receiving
process. Figure 1 in the appendix summarizes this access
technique.

As a result of making the receiving process~ ECT segment
known to the sending process. an entry is made in the
Known Segment Table (KST) of the sending process. A process
needing to signal a large number of other processes would
find its KST growing very large. Some form of housekeeping
is necessary to make-unknown ECT segments that are no
longer needed. The simplest method would be to call the
primitive terminate (80.3.02) immediately following each
access to an event channel. This would remove the entry
for the corresponding ECT segment from the KST. The cost
of the solution would be high~ however. because each event
channel access would cause the file system hierarchy to
be searched for the needed ECT segment. Instead. a process
associative memory (PAM) is defined. The PAM is structured
as a threaded list of entries. Each entry remembers a
process id and an ITS-pair pointer to that process~ ECT
segment. The most recently referenced process~ PAM entry
is always linked to the head of the list. (It is most
important to remember that a PAM is associated with~
process. and contains entries for other processes to-which
the containing process is signaling events.) The ITS-
pair pointer is valid only as long as the corresponding
ECT segment is "known" to the sending process. Thus.
ECT segments are made unknown by calling terminate only
when their PAM entry falls out the bottom of the PAM.
Thus. the number of ECT segments known to a sending process
at any one time can be no greater than the capacity of
the PAM.

With the addition of the PAM~ event channel access now
involves the following steps. The PAM is searched from
head to tall. following the thread~ for a match.ing pryye~s
!g. If a match ls found. the matched PAM entry is re n ed
to the head of the PAM and the ECT segment pointer is
returned. If no match is found, initiate is called to
produce a valid pointer. and maKe known the proper ECT
segment. A new PAM entry is created~ physically replacing
the PAM entry at the tall of the list. This new entry
is then logically relinked to the head of the list. Terminate
is called for the ECT segment whose PAM entry was replaced.
Once a valid ECT segment pointer is obtained~ that segment
is 11 hash11 searched for the needed event channel. Figure
II in the appendix illustrates this access technique.

.•

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.09 PAGE 3

The "Hash" Coded Search Algorithm

ln order to implement the "hash" search, each process
includes a separate segment named the Event Channel Hash
Table (ECHT). The ECHT is a single dimensional array
of ECT indexes. The lenRth of the ECHT is always an integer
power of 2. (length= 2 , n = 1, 2, 3 •••).

To see clearly how the "hash" search functions, an event
channel must first be created in the ECT segment. (A
process may create an event channel only in its own ECT.)
The ECT is initiated as a forward linked chain of free
entries. The index of the head of the chain is in the
ECT header. Physical storage for the new entry is simply
found as the head of the chain of free entries. (Deleted
entries are replaced at the head of the chain, also.)
The function, unique bits (BY.15.01), is used to generate
the new event channel's name, and the name is set in the
entry. The low order bits of the 70 bit name are the
clock reading. For small n, then, the low order n-bits
will cycle very rapidly, and, on random sampling, will
be uncorrelated. Since n-bits will also completely index
a table of length = 2n, the hashing algorithm for an ECHT
of that length is:

start_index = fixed(substr(ev_chn_name, 71-n,n)) + 1,

In the first free ECHT entry after the ECHT entry indexed
by start index is stored the ECT index to the actual event
channel.- The event channel name is also stored here.
The ECHT is the only table actually hashed.

To retrieve the event channel, the sending process must
first locate the ECT segment containing the event channel
using the previously described method. It must also locate
the ECHT segment of the receiving process. (To facilitate
this, the PAM in the sending process also remembers the
ECHT segment pointer. ECHT segments are made-known and
made-unknown in a sending process whenever the paired
ECT segment is made known or unknown.) The following
steps are then taken.

1 •

2.

3.

4.

Obtain start index from ev chn name.

Compare ev chn name to the channel name stored
in ECHT entry (start index)

If they match, the index in ECHT entry<start index)
is the index to actual event channel 1n the ECT.

If no match occurs, repeat steps 2 and 3 using
start index= start inde2< + 1, unti 1 a match occurs,
the ECHT is exhausted, or an empty ECHT entry is
found.

i
I

l
I

j
i
I •

'

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.6.09 PAGE 4

Both the ECHT and the ECT can be extended to maximum Multics
segment size, for they each reside in an open-ended segment.
When the ECT free chain becomes empty, more ECT entries .
are added and linked to the free chain. If the ECHT becomes
over 3/4 full, its size is doubled and it is rehashed
by sequentially searching the ECT for defined Event Channels
and "hashing" their names into the ECHT. In a similar
manner, when less than 1/4 full, the ECHT may be shrunk
by factors of 2. [The ECT cannot shrink, it can only
grow.]

Working Queue Cell Access

Event channels may have their capacity expanded by linking
Working Queue (WRKQ) cells to them. The WRKQ is also
a separate segment within each process. Any sending process
may cause an empty WRKQ cell in the receiving process~
WRKQ to be appended to an event channel in a receiving
process if that channel is in the event queue signaling

· mode. Since ·two or more separate processes in separate
processors may require this action simultaneouslr, a race
may occur in reserving a free WRKQ cell. For th s reason
free cells are reserved using the "stac" instruction.
The interlock constant is the index of the ECT entry (event
channel) to which the WRKQ cell is to be appended.

Free cells in the WRKQ may not be linked together because
relinking the free queue would require locking the WRKQ
to another sending process. To provide lock-free access,
free WRKQ cells are located by a simple linear table search.
To keep the search short, the starting index for the search
is computed from the event channel index, thus

start_index = n* ev_chn_index;

where n is the dimension of WRKQ divided by the dimension
of ECT, and ev chn index is the ECT index of the correspOnding
event channe 1. The search is an "end-around'' search. ·
Only if no free WRKQ cell can be found is the size of .
the WRKO increased (with corresponding change in the value
of n).

Because the WRKQ is also used to provide access control
to the ECT, it must be referenced each time a signal is
sent to an event channel in the containing process. For
this reason, a WRKO segment pointer is also carried in
the PAM entry in the sending process.

..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION ~ .6.09 PAGE. 5

The.Structure and Operation of the Process Associative MeQ19rv

The following declaration defines the PAMr

declare 1 pam external static /*Process associative memory*/,
2 start fixed bin(17) /,'(index of 11 head11 of pam*/,
2 end fixed bin(17) /*index of 11 tai1 11 of pam*/,
2 entry(30) /*Process entry array*/,

3 prcs_id bit(36) /*process identification bit
string*/,

3 1_up fixed bin(17) /*index of next 11 higher11 pam
entry*/,

3 ectp pointer /*pointer to process' ECT
se~ment*/,

3 echtp pointer /*Po1nter to process' ECHT
segment*/,

3 wrkqp pointer /*pointer to process' WRKQ
segment*/,

3 1 down fixed bi.n(17) /*index of next 11 lower"
- pam entry*/ 1

The PAM is a single chain of entries. The variable start
is the index to the head (or top) entry in the chain,
while eyd is the index to the tail (or bottom) entry of
the cha n. The two variables, 1 uo and 1 down in each
entry are the indexes to the ne~ighe?1 and the next
11 lower11 entries in the chain, respectively, from the containing
entry. Thus, the chain is hnked both forward and backward.

The PAM is searched down the chain from entr~ (start~ ·
to entry (end). If a match is discovered, t e match ng
entry is relinked to the top of the chain. If no match
occurs, initiate is called three times to locate the needed
pointers, and a new PAM entry created. This new entry
physically replaces ent end , and is then relinked
to become entr start • The ECT, ECHT, and WRKQ segments
for the entry eleted are made-unknown.] Figures lila
and Illb show the physical and logical structure of a
5 entry AMT. Figures IVa and IVb show the physical and
logical structures after entry(4) is referenced. Figures
Va and Vb show the physical and logical structure after
a new entry is added to the memory in Figures Ilia and
II I b.

Event Channel Deletion

A special problem is encountered when deleting an event
channel. It is possible that the event channel to be
deleted wi 11 be busy at the time the containing process
wishes to delete it. The ECM procedures for deleting
channels, delet ev chn, checks to see if the channel is

!
i

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.09 PAGE 6

busy. If it is not busy. delyt ev Cbn locks the channel
to all users, and deletes ltmmedlately. If the channel
is busy, a special lock is set in the channel which allows
the process(es) using the channel to finish, but no more
to begin using it.

At this point, the deleting process could call 11 bloyk"
and wait for the channel to become quiet. This wou d
not be appropriate. however. because it would force the
process to walt for a channel it no longer wants or needs.
The busy channel is instead placed in a queue of channels
pending physical deletion in the ECT. Later, in a frequently
used section of ECM procedure, this queue is checked.
and those channels on the queue that are no longer busy

·are physically deleted. Logically, as it appears to the
containing process the channel is completely deleted
when dllet ev chn !s called. The sometime delayed physical
remova of the channel is completely transparent to the
user of IPC.

The &vent Cbsannel Manpger Primitives

The ECM primitives do the actual work of event channel
access. including searching and updating the PAM. In
addition, they are responsible for maintaining the ECT.
ECHT, and WRKQ. · .

Event channels are created by ere chn. An event channel
may be created only within a p"rocess,. own ECT. Event
channels are retrieved from the contained ECT by ref cbn.
The more involved task.of accessing an event channe In
another process' ECT is performed by get chn. Channels
are erased from the contained ECT by ~rase Cbn, which
calls upon d~l cbn to perform a subfunctlon. The pointer
to a receiving ECT may be obtained separately with the
primitive get tbl.

The working queue is manipulated by three primitives.
Cre cell and gel cell create and delete cells from a process~
own WRKQ. Get cell is used to create WRKQ cells in another
process' WRKQ.

It is emphasized that these primitives are an internal
part of the Event Channel Manager andt as such, are.intended
to be called only by the Event Channel Manager itself.

\.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.6.09 PAGE 7

The calling sequences and the argument declarations for the
primitives followt

1 •
2.
3.
4.
s.
6.
7.
B.
9.

call
call
call
ca 11
call

call
call
call
ca 11

ecmpr~cre_chn(ev_chn_name,ecex,ecep,sts)
ecmpr ret_chn(ev_chn_name,ecex,ecep, sts) ·
ecmpr del_chn(ecex,sts)
ecmpr erase_chn(ev_chn_name,sts)
ecmpr get_chn(ev_chn_name,ecex,ecep,sts,prcs_id.,
ectp,wrqp)
ecmpr~get_tbl(prcs_id,ectp,wrqp,sts)
ecmpr cre_cell(ecex,cell_type,wqcx,wqcp,sts)
ecmpr del_cell wqcx,sts)
ecmpr get_cell~ecex,cell_type,wqcp,sts,prcs_Jd)

declare

cell_type fixed bin(17)

ecep pointer
ecex fixed bin(17)
ectp pointer
ev chn name bit(70)
prcs_iCf bit(36)
sts bit(36)
wrqp pointer
wqcp pointer
wqcx fixed bin(17)

I* 1 =event queue cell
2 =associated procedure cell
3 = channel access cell *I.

I* event channel entry pointer *I,
I* event channel entry index*/,
I* ECT segment pointer*/,
I* event channe 1 name *I,
I* process id *I,
I* error status word *1,
I* WRKQ segment pointer *I.
I* WRKQ cell pointer *I,
I* WRKQ ce 11 index */ 1

Following is a brief description of each primitive. Error
returns from all primitives are indicated by a non-zero

·value in sts.

1. cre_chn "create event channel entry in own ECT"

No input arguments are given. An event channel name is
created and returned in ey chn name. A free ECT entry is
initialized as this channel, and its index and pointer
returned in ~ and ecep.

2. ret_chn "retrieve event channel from own ECT"

3.

Ev chn name is given as an argument. The channel ls
located using the hash search of the ECT. Its index
and pointer are returned as ~ and ecep.

del_chn "delete event channel from 0111n ECT11

The event channel index is given as an argument (ecex).
The indexed entry in the process~ own ECT ls zeroed out
and reattached to the queue of free ECT entries. The
corresponding ECHT entry is also removed.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.09 PAGE 8

4. erase_chn "erase event channel from own ECT11

The event channel named by ev chn n~me is erased from
the process' own ECT. A 11 connecte WRKQ cells are
removed and del chg is called to zero out the entry.
If the channel is usy an error return occurs.

5. get_chn 11 get event channe 1 from any ECT"

The event chann~l, ev chn name, within the process,
pres id, is located. Pres id may indicate the caller's
process. Ectp returns a pointer to the containing
ECT; and ecex and eceR return an index and a pointer
to the proper event cannel entry within that ECT.
~ returns a pointer to the WRKQ in the accessed process.

6. get_tbl "get ECT segment of another process"

The ECT segment pointer and the WRKQ segment pointers
are returned in ectp and m. Pres id is input to
indicate which process' tables are desired. :

7. cre_cell"create a WRKQ cell within your own WRKQ"

~ is input as an event channel ent,ry index, and
cell type indicates the type of cell desired. The WRKQ
is searched for a free cell, and the cell is reserved
for the channel indexed by ecex. The cell type is set.
The WRKQ cell reserved is notl'"inked to the event channel
indicated. Wgcx and ~ return an index and a pointer
to the WRKQ ce 11 reserved. . ..

8. del_cell "delete WRKQ cell from own WRKQ 11

The WRKQ cell indexed by wgcx is zeroed and returned
to the group of empty WRKQ entries.

9. get_cell 11 create a WRKQ ce 11 in any process' WRKQ11

yet cell performs the same function as ere cell, but
s not restricted to the caller's WRKQ. Pres ld indicates

the des 1 red WRKQ •

, I

I!
''

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.09 PAGE 9

Sending Receiving
Process Process

ECM process id
ECM _. _J' ... ' ev chn name -

ECT ECT

Basic Interprocess Communication

Sending Receiving
Process Process

I'IU~M ~ ECM
' ~ ev chn name to

"hash" sea1 ~h ~~v-chn-~ntry pointer
mechanism _!"""~
ECT ECT

...._...

SMM ~ Process id to
SMM

ECT pointer
conversion

Channel Access

Figure I

MULTICS SYSTEM-PROGRAMMERS' MANUAL

searc
for prcs_id
match.

reate new
AM entry
relink to top

hash search
proper ECT
using ECHT if

e

SECTION BQ.6.09

YES

relink match
to
top

Figure II Channel Acces~·

PAGE 10

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.09 PAGE 11

KEY:

(physical) a

FIGURE III

(logical) b

(physical) a

FIGURE IV

(logical) b

(physical) a

FIGURE V

i
I

i,-. :- (logic~l) b

AMT
entry

2 ij)
--

, __
m
\j)

4 w
\

--

link_up

-- --

index of this entry

link down

-- -----

' ' J
'-------- ----- ____ ,

m w
!

\

' ... ------ ~- -----.-

