
MULTICS SYSTEM. PROGRAMMERS' MANUAL

ld~nt if icat ion.·

1/0 Outer CqllS (BF .1.00)
P.G. ·.Neumann, M.A. Padlipsky

.SECTION ·ss.5 .01 PAGE 1

Published, 03/14/69

Note that the following .ca 11 s are entry points. to the 1/0 ·
Switch (<iosW>). They are callable through the gate segment

· <ios> (BS.0.03).

See ss.s.oo for declarations of the generic l/0 arguments ..
The definitions of the arguments are contained in the functional
descriptions below.· ·

$atta~h

The gt.tacb call associates ttie given ioname (ionamel)
with a previously defined name or otherwise known device
specified by ioname~. ·.This ·association is meanlngful ··.
within the framewor of the user's process group. Jhe .
resulting a~tachment remains in force until remove<:! by.
a d~}ech ca 11_· (see be low). .A-·~- and a mods; (see the
chabg~m2de call below) are associated with the attachment.
See BF .1 • 01 •

call attach(ionamel,type,ioname2,mode,status);

$de~ecb
. . .

The dej$\£b call removes for the given ioname(s) an association
establ shed by an attach call~ The disP.Q§al argument . .
indicates how dedicated resources (e.g., tapes and tape .
drives) are to be treated. See BF .1.01.

ca 11. detac;:h (ioname 1, ioname2, d i sposa 1, stat us);

Schaosa~mod~

.The mode (spe'cifled by mode)·of an attachment describes
certain characteristicsr=eTated to the attachment (e,.g.,
readable; writable; appendab le; random or sequentia 11 · ·
if log ica 1, 1 i near or sect iona 1). The sthsng!fDed§ ca 11
permits mode changes to be invoked for the.· g ven ioname(s)
which modify the mode of the attachment. See BF .1.01. r

~ 11 cf1angemod~(ionarne,mode,status);

MULTICS SYSTEM PROG~MMERS"' MANUAL SECTION 65.5.01 PAGE 2

$getmod~

The. get[!!Ode ca l1 returns a terse encoding (bmodt) of the
mo~e of:th~.a~tachment specified by the given ioname.
Th1s call 1s tntended primarily for use by lOS modules •

. See BF.1.01. (Design is tentative.)

ca l1 getmocte.Cioname,bmode, status) 1

Sreadsync

. ·For·~ glven· valid 'ioname (i.e., a name which has previously
been properly attached by means of an attach call), the
r~adsync ca 11 sets. the read. synchronization mode (rsmoge)
of subsequent~ calls (see below). This mode is either
synchronous or asynchronous. Synchrony imp 1 ies that contro 1
is not returned- ... to.-the caller until the read request is
either physically initiated or physically completed, .depending
upon whether the workspace synchronization mode (see the
worksync call below) is asynchronous or synchronous, respectively.
Asynchrony implies·· that read-ahead is possible to the · ·
extent ,pefn,litted by the limit argument, which points to
the deslr~d maximurl(nunt>er of ·elements which may be read
ahead. The default mode is asynchronous. See BF.1.04.

ca 11 ree1dsync (ionanwa, rsmode, 1 imi t, status);

Swritesync

For a given (valid) ionc;1me, the writesyns; call sets the
write _synchronization. mode (wsmode) of subsequent write
calls (see be low). The mode is either synchronous or
asynchronous. Synchrony implies that control is not returned
t.o the caller unti 1 the write request ls either physically
initiated or ·physically comple~ed, depending upon whether
the workspace· synchronization mode (see work Sync) is . ·
asynchronous or synchronous., respectively. Asynchrony .
implies that write-behind is possible to the extent permitted
by the· .. 1 imi t argument, which points . to. the desired maximum
number of· elements which may be written behind. The default
mode is asynchronous'! See BF.1.04.

·call writesync(ioriame,wsmode, 1 imit,status) 1

$r.esettes9

The resetregg call is used to delete unuseq read·ahead
datacollected by the l/0 system as a result of read-ahead
associated with the given ioname. See BF.l.04.

ca 11 resetread(ioname, status);

MULTICS SYSTEM PROGRAMMERS' ~NUAL SECTION BS.S.01 PAGE 3

$re§etwrit~

The resetwrite call is used to delete unused write-behind
data collected by the 1/0 system as a result of write-behind
associated with the given ioname. See BF.1.04.

ca 11 resetwri.te(ioname, status);

$worksync

For a given ioname, the work~ync call sets the workspace
synchronization mode. The mode (!e(kmode) is ~ither synchronous
or asynchronous. synchrony implies that control is not
returned to the caller until the I/O system no longer
requires the user's workspace (see~ and wrJte calls
below). Asynch·rony lmpl ies that some kind of initiation
of the ca 11 has taken place, a lthou~h the workspace may
still be in use. The default mode 1s synchronous. See
BF.1.04.

ca 11 worksync{ioname,wkmode, status);

$iowait

For a given ioname whose workspace.synchronization mode
is asynchronous, the iowait call defers the return of
control as if the workspace synchronization mode were
synchronous for the most recent ~ or write ca 11 or
for a specified previous call. The argumerit oldstatus
is the original status argument returned for the particular
previou·s transact ion, and is used to identify that .
transact ion uniquely. If oldstatus is missing, the most
recent transaction is implied. See BF.1.04.

ca 11 iowa it (ioname,o ldstatus, status);

$abort

When the workspace synchronization mode is synchronous,
the sbor} call causes all outs~anding transactions to
be aborted (oldstatus is ignored). When the workspace
synchronization mode is asynchronous, transactions are
aborted beginning with the one corresponding to oldstatus,
which contains the identification of an earlier call.·
See BF.1.04.

call abort(ioname,oldstatus,status);

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BS.S.01 . PAGE l~

$prder.

The order call is used. to issue a reques~ (n~gue§·t) to
outer modules. argptr points to a data structure containing
arguments relevant to tne particular request. The call
is used for communication among I/0 system modules. It
may also be used to set hardware device modes.

ca 11 6rder(ionarne, request,argptr., status);'

Sgetsize

The gets ize ca l1 returns the current element size (e 1 size)
associated with read and write calls for the given ioname •.
See BF.1.05.

. . ..

call getsize(ioname,elsize,status);

Ssetsize

The setsiz§ cc:tll sets the element size (elsi~e) for subsequent·.
read· and write calls with the given ioname. See BF. 1 .os. .

call· setsize(ioname,elsize,status);

$read

The reag·call attempts to read into the specified workspace
(starting offset items from the beginning of the workspace)
the requested number (nelem) .of elements from the frame ·
specified by the·given ioname. Reading begins with current
i tern of frame. Thus for a linear frame, reading begins
with the element pointed to by the ''read'' pointer. Reading
is normally terminated by the occurrence of a read delimiter
or by the reading of nelem elements, whichever comes first.
The "rec;1d'' pointer is moved to correspond to the element
after ~he one last read. For a sectional frame Y, reading
be$ins w.ith the first element (pointed to by the "read" ..
po1nter for X) of the current subf rame X, where the current
subframe is that pointed to by the "current" pointer for ·
the frame Y of which X is a subframe. Reading is normally
terminated by the occurrence of the end of thesubframe,
by the occurrence of a read delimiter, or by the readin~

·of nelem ·elements, whichever comes first. The "'current'
pointer for Y and the 1' read'' pointer for X are moved to
correspond to the first elerrient of the next frame X.
See BF.1.06. .

ca 11 read(ioriame,workspace,offset, ne lem, ne lemt, status);

MUL TICS SYSTEM PROGRAMMERS' MANUAL SECTION BS~S.Ol A\GE 5

$write

The write call attempts to write from the specified workpace
(starting offset items from the beginning of the workspace)
the requested number (nelem) of elements onto the frame
specified by the ~iven 1oname. The number of elements
actually written 1s returned (nelemt)o The behavior of
the k{rite call with respect ·to the "write" pointer is
similar to that described above for the read call with
respect to the u read" pointer, except that there is no .
write delimiter. \'tJriting begins with the current item
of the frame. Thus for a linear frame, writin~ begins
with the element pointed to by the ''write" po1nter. Writing
is normally terminated by the writing of nelem elements.
The "write" pointer is moved to correspond to the element
after the last one written. for a sectional frame Y,
writin~ begins with the first element (pointed to by the
"write' pointer forX) of the current subframe X, where
the current subframe is that·pointed to by the "current"
pointer for the frame Y of which X is a subframe. Writing
is normally terminated by the writin~ of nelem elements.
The "current" pointer for Y and the '\vri te" pointer for
X are moved to correspond to the first element of the
next frame X. See Bf.1.06.

call write(ioname,workspace,offset,nelem,nelemt,status);

$setdel im

The setgelim call establishes elements which delimit data
read by subsequent linear read calls with the given-ioname.
The argument breaklist points to a list of break characters
(containing nbreaks elements), each serving simultaneously
as an interrupt, canonicalization and erase-kill delimiters.
Break characters are meaningful only on character-oriented
devices. The argument readl ist points to a 1 ist of read
delimiters (containing nreads elements). The new delimiters
established by this call are in effec~ until superseded
by a subsequent setdelim call. See BF.1.06.

ca 11 set de 1 im (ioname <. nb reaks, b reakl is t, n reads, read 1 is t,
status);

$getde 1 im

The getdelim call returns to the caller the delimiters
established by the most recent setdelim call, with the
arguments having precisely the same meaning for both calls.
See Bf.1.06.

ca 11 get de 1 im (ioname, nbreaks ,break 1 is t, nreaCis, read 1 is t,
status);

MULTI::S SYSTD1 PROGR/\r1MERS'' t'AI\JUAL

$seek

·The s·:.:ek call sets the refErence pointer specified by
Qj:.rn:~!ne1 to the value of tre pointer specified by Qtrnamc:2
piusfhe' valu~.: of a signed offset (if .Qf..f.§.c;t is present).
g_trn9JI)S~l may be "read11 , 11 Wdtc11 , "1ast" or-li'bound'!, or
in th·~ case of a sectional frame, "current', "las·:" or
"bound". Q..trname2 may be 11 read", ''write", ''first'', "last"
or "br)lmd", or in the case of a sectioal frame, "current",
"first", ''lasttt or ''bound'' .. For physical I/0 (using the
read r.::>c and write rec ca 11 s), pt rneme 1 may ~e "current rec"

11 last" or "bound", whi 1e Q!rname2 may be 11 currentr-ecu ~
"first", 11 1 as t" or "bound'' • The seek ca 11 is used to
truncate, e.g., seek(ioname, 11 1ast11 , 11 last11 ,-'-rD), o,~ to
set the bound of the frame, e.g., seck(ioname,."bound",
"last" ,27), in addition to its more traditional u:5agc
involving the 11 read" and "write" pointers .. e.g.,. ·5eek
(ioname,"n~ad","write",-2). The "read" and 11 write" pointers
are also set as a result of read and write calls, respectively
(see above). Each reference pointer refers to an item
numbe""'. vJhich fram::; is referred to depends upon the ~
argument of the attach call. See BF.1.06.

:a 11 seek (ioname, pt rn~me 1, pt rname2 .. offset, status);

~te 11

The tell call returns the value of the pointer specified
by .J?Imamc 1 as an offset (gffset) with respect to the
given otrname?. ~ The argumEnts ptrnamel, Qtrname2. and
offset have the same meaning as in the ~:5. call. As
an ex.:~mple, the .!£11. call may be used to o:Jtain the bound
of a frame by ca11 te11(ioname., 11 bound",' 1first",offsct).
See s;=- • 1 • 06.

·-all ·tE·11fion"'mP r)trn"'nlc:. 1 ptr";:;rll'"'" ·of-Fo:-o"'-l. st.::>tus).,
- • # I ~ \ .~ ,(.A • , t- • . (_/ C ij I "' ~ I --..t, C .• L I • ~ .:..> \....,.. , \....4 , ,

