
TO: 
FROM: 
SUBJECT: 
DATE; 

Section 
tools. 
Segment 
segment 
and for 

MSPM Distribution 
Richard Gardner 
BV.10.01-.10 
10/30/69 

BV.10 introduces a series of Library Maintenance 
Procedures are availaple for manipulating a Multics 
List (a segment containing information about a 
library) on-line 6 to produce hard-copy off-line 
use with automatic library up-date procedures. 

,· 

1 . 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV.10.01 PAGE 1 

Published: 10/29/69 

Identification 

Multics Segment Library On-Line Information Base 
Multics Segment List (MSL) 
Edwin w. Meyer, Jr. 

Purpose 

The Multics Segment List (MSL) is a data format for an 
on-line segment containing information about a segment 
library. The MSL is designed for on-line user interrogation. 
for conversion to ascii for printing as a hard-copy library 
listing, and for use with automatic library up-date procedures. 
It is of sufficient scope as to be useful under a number 
of different maintenance philosophies. 

Overview 

An MSL is a set of segment information entries referenced 
via an alphabetized look-up list. This list allows (a) 
the entire set of entries to be listed in alphabetical 
order, and (b) a rapid search to be made for a particular 
entry. Each entry contains information concerning one 
segment or other type of name. 

The MS L uses LSM 1 ist structure format (MSPM BY .22) for 
speed and efficiency in entry look-up and modification. 
It is not an ascii segment, although it does contain ascii 
blocks. Thus it can not be directly printed. 

MSL Entry Format 

Each MSL entry consists of a 12 element node array plus 
various subsidiary LSM data blocks. (See MSPM BY .22.01 
for LSM data .organization.) In the description below, 
all items are character string blocks unless otherwise 
indicated. 

LSM array 
index 

0 , 

Item 
Identification 

name 

type_ code 

Description 

segment or other name 

(binary) name type (see 
BV.9.02 for type_code list) 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV.10.01 PAGE 2 

2 source insta 1 -
3 object_ i nsta 1 

4 system_id 

5 who_auth 

6 who_mod 

'7 area_ use 

8 document 

9 superior_ list 

10 inferior _1 ist 

11 path_ list 

installation date of source 
for this segment 

installation data of object 
for this segment 

id of system of installation 

initials of author of segment 

initials of later modifier 
of segment 

basic area of use for this 
segment 

MSPM BS abstract section 

node address of top of threaded 
list of superior MSL entries 
(see below) 

node address of top of threaded 
list of inferior MSL entries 
(see below) 

node address of list of source 
and object path names. (see 
below) 

A superior/inferior list is a set of doubly threaded associative 
blocks (one block per name combination) that link an entry 
to superior or inferior entries. Each associative block 
is a 4 element node array of the following format: 

0 sup_entry 

1 inf_entry 

2 nxt_sup_blk 

3 next_inf_blk 

.(node address) pointer to the 
superior entry of the combination 

(node address) pointer to the 
inferior entry of the combination 

(node address) pointer to the 
next block in the superior 
list 

(node address) pointer to th(; 
next block in the inferior list 



-·--

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV. 10.01 PAGE 3 

MSL figure 1 

entry A 
list of 

inferior segments 

I I I 
------- T - - - - - - - - - T - - - - - - - - - - -,- - - -

!super or entry A 
f inferior entry X11 

xt superior blk I 
lnxt inferior blk 

_____ ..;_T ______ _ 

!superior entry A I 
I inferior entry B I 
nxt superior blk I 

I nxt inferior b 1 k· 

------r--------

superior 
1 i st of X1 

Figure 1. Example of Doubly Threaded 
Superior/Inferior List 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BV .10.01 PAGE 4 

When 
1 i st 
list 
e.ach 
1 • 

properly threaded, for each entry (j) in the superior 
of an entry (A), that entry (A) is part of the inferior 
of entry (j), and vice-versa. A null node (0) terminates 
threaded list. An example is illustrated in Figure 

The path list of an entry is a four element node array 
consisting of the following paths: 

0 source_path path of source segment 

1 object_path path of object segment 

2 old_dir path of directory containing 
previous source and object 

3 info_dir path of info segment 
(currently used for locating 
bound segment bind map) 

The entry type_code determines the interpretation of each 
of these paths in one of the following ways: 

(a) not used 

(b) free segment - pathname of containing directory 

(c) archived segment - pathname of archive 

MSL List Structure 

The root of the MSL 1 i st structure is a four node 11 root_l i st•• : 

Identification 

0 entry_l ist 

1 

2 type_l i st 

Description 

(node address) pointer to the 
list of entries 

(node address) pointer to·a 
hash list of character strings 
other than entry names. 
(Ensures that only one 
physical character block is 
created no matter how many 
times it is used.) 

(node address) pointer to a 
list of ~terns defining the 
various type_codes. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BVo 10.01 PAGE 5 

11 type_l ist11 is a node array whose 'j 'th node points to 
an 11 item_l ist11 defining type_code j. 

"item 1 ist11 is a 3-node array containing the following 
items'7 

0 

1 

2 

type 

source_suffix 

path code 

2-char type code 

suffix of source segment 

4-element fixed binary 
array specifying the 
interpretation to be 
given the paths in the 
corresponding array 
positions of 11 path_list11 

The following path codes are currently defined: 

0 

1 

2 

this position not used 

free segment - pathname of containing 
d i rectory 

archived segment - pathname of containing 
archive 


	bv-10-01.cover.pdf
	bv-10-01.691029.multics-segment-library.pdf

