
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Salvager
N.I. Morris

Purpose

SECTION BV.9

Pub 1 is hed:

The Multics Salvager is a set of pro~rams designed to
be run after a Multics system crash 1n order to restore
the integrity of the file system hierarchy. It is run
as a separate bootload immediately after a system crash
and emergency shutdown. The entire directory hierarchy

PAGE 1

07/28/69

is scanned recursively by the Salvager and all inconsistencies
are noted and corrected. At the completion of the salvaging
operation a normal Multics warm boot should be possible.
The only segments lost will be those that were in a user's
process directory. Pages of segments may be lost if they
reside on illegal or conflicting device addresses.

The sa lvag.ing environment

The Multics Salvager requires secondary storage of its
own (for paging purposes) orthogonal to the secondary
storage used by the Multics System. Yet, the Salvager
must be able to access the secondary storage used by the
Multics System in order to examine and correct the Multics
file system hierarchy. Thus, a partitioned storage scheme
has been devised accommodatin~ at least 2 separate partitions,
one for normal Multics operat1on and one for the operation
of the Salvager. This sGheme allows a system running
in one partition to access secondary storage records in
another partition., but it prevents the file system from
assigning pa~es for the running program in anything but
its own part1tion. To give an example of this scheme,
assume that the Multics partition uses all of the fire
hose drum and one group on the disk, and that the Salvager
partition uses a second group on the disk. The secondary
storage available might be diagrammed as follows:

DRUM DISK
Multics

Salvager

The shaded areas represent areas of secondary storage
not available for paging purposes but accessible as data.

The Salvager is supported by a subset of the Multics System.
This subset inc 1 udes a 11 of page conf.ro 1 but. not d i rec ~O!Y
control. This provides a virtual memory env1ronment s1m1lar

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BV.9

to that used by the Multics Checker. In this environment#
all segments comprising the Salvager and its data bases
will remain active since no directory hierarchy exists
for the Salvager itself. Thus# the Salvager is capable

Pi\GE 2

of supporting more program and data than can fit in the
available core storage# but it does not have the capabilities
of a full Multics System (i.e.# it cannot take segment
faults).

The only modification necessary to be made to the standard
Multics System in order to support the Salvager is that
of the partitioned secondary storage. This is accomplished
in an extrememly simple fashion by addin~ an extra parameter
to the •• INTK'• card in the BOS configurat1on deck. This
parameter is a four character partition name. This name
will be searched for on a new type of BOS configuration
card, the "PART" card. This card has the following format:

PART NAME DRUM_FIRST_REC DRUM_NREC DISK_FIRST_REC DISK_NREC

For the partitions described previously# these cards might
appear as follows:

PART MUL T
PART SALV

0
0

10000
0

0
10000

10000
10000

The 11 DRUM'' and ''DISK11 cards appear in the BOS configuration
deck as usual. Under Multics, 11 initialize dims•• searches
for the '1 PART" card specified on the 11 INTKrr card, as well
as the 11 DRUM'' and 11 DISK11 cards, and initializes the file
system DIM's accordingly. The drum DIM must be initialized
even if the partition specifies no drum storage, since
the Salvager requires drum access even if it does not
page onto the drum. Note that the "DRUM" and 11 0 ISK' 1 cards
specify the total configuration of secondary storage,
while the "PART11 card specifies the portion of that configuration
to be used for paging purposes.

Manipulation of Data Segments in the Salvager

Since the Salvager does not have a full Multics system
available to it# it cannot access the directories in the
Mult!cs hierarchy in a straightforward manner. Segments
cannot simply be initiated, then referenced. A segment,
therefore, must be accessed in a rather indirect manner.
If it is known where in secondary storage a segment resides,
that is, if the secondary storage device address of each
pag~ of the segment is known, then the contents of that
segment can be referenced. This is done by manufacturing
an Active Segment Table (AST) entry and a page table for
the segment, and by filling in the page table words with
the device addresses. lf ~n SOW exists which points to
that table# then references through that SOW will automatically

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION RV.9 PAGE 3

cause page control to retrieve pages of that segment~
even though the secondary storage addresses are not part
of the salvager's partition. When work on the segment
is completed~ the pages of the segment are writtt~n out
by a call to "pc$write.'' Those pa~cs modified will be
rewritten onto secondary storage (1n the Multics partition);
those not modified will simply be deleted.

Since the Multics directory hierarchy is recursively
tree-structured, and since the Salvager searches this
hierarchy recursively, it is necessary for the Salvager
to have access to more than one segment in the hierarchy
at a given time. The maximum recursion depth has been
arbitrarily set to 32, so the Salvager must have the
capability of accessing 32 segments simultaneously. The
segment accessing primitives of the Multics Salvager provide
this capability by reserving 32 special AST entries, 32
page tables, and 32 SOW's for the purpose of accessing
di·rectory segments recursively. A push-down 1 ist is
maintained which is "pushed11 whenever an inferior directory
se·gment is to be accessed and "popped" when that segment
is no longer needed. These primitives fill in the appropriate
special AST entry and page table, given a directory entry
including file map, making access to that segment possible.

It is not possible for the Salvager to create new segments
in the Multics hierarchy. If a directory is to be completely
replaced with a new copy, that copy must first be created
in a temporary segment (residing in the Salva~er's partition).
Then, it is copied over the original. It is 1ntended
that only one segment need be copied at a given time 1

hence only one 65K temporary segment is provided in the
Salvager for this purpose.

Salvaging Directories

The most common problem with directories is the presence
of locked directories in the Multics hierarchy. The presence
of a lock set in a directory may indicate that the directory
was in the process of being read or in the process of
being modified. If the directory was simply locked for
reading, the lock can be reset by the Salvager and no
further action need be taken. Hqwever, if the directory
is in the process of· being modified, there are many tests
which should be performed to insure the integrity of the
directory. Currently, there is no way to determine if
a directory was locked for reading or mopification, so
the Salvager must assume the worst case •. If a lock is
found to be set, the Salvager will rebuild the entire
directory. Such items as branch counts 1 link counts can
and should be verified. Other items such as the CJ.\CL

MULTICS SYSTU1-PROGRJ\MMERS" f"VUJUAL SECTION BV.9

and the hash table can also be examined for consistency.
The initial Salvager is desi~ned to only verify the counts.
More sophisticated designs w1ll appear later.

Salvaging Directory Entries

As each dit-ectory entry is examined~ certain actions must
be taken depending on whether the entry is a branch or
a link and~ if a branch~ whether that branch is a directory
or not. The most common problems with branch entries

PJ\GE Lr

will probably prove to be inconsistent file maps and active
entries. For every branch entry in a directory~ each
address in the file map must be validated. This is accornpl ishcd
in the following manner: Two free storage bit maps are
maintained by the Salvager (in addition to the one for
the salvas;er partition maintained by page control). One
of these 1s the free storage bit map in use by Multics
at the time of the system crash or shutdown. The seccnd
of these is initially empty (i.e., all records in the
Multics partition are marked as free). The first bit
map is checked to insure that a device addr-ess is •• protected•!
(i.e.~ indicated as being used). The second bit map is
checked to insure that the device address has not already
been used. The first occurrence of a device address is
considered by the Salvager as the only valid occurrence
of that address. Thus, when the Salvager discovers a
reused record, that address will be made null~ setting
the contents of that page of the segment to zero. At
the completion of the salvaging operation~ the second
bit map is the one written back onto Multics secondary
stora~e. Thus, device addresses previously indicated
as be1ng used~ but not appearing in the file map of any
segment are freed up.

Active entries are those with a non-zero AST entry pointer.
This condition indicates that the segment was active at
the time that the Multics system crashed. New pages and
mod~fied pages of this segment will be lost if a successful
emergency shutdown has not taken place. The only action
the Salvager can take in this case is to zero the ASTE
pointer. In addition, the Salvager will rebuild the directory
containing this entry.

Other items in a branch entry which are validated include
the current length, the device i.d., and the move device
i.d. The current length should always be equal to the
highest non-zero page of a segment. The only legal device
i.d."s are currently 1 (drum) and 2 (disk). Illegal device
i.d."s will cause the segment to be truncated. Such items
as the entry names and ACL of each entry can also be examined.
The initial Salvager does not concern itself with these,
however.

MUL TICS SYSTEM- PROGRAMMERS' fVli\NUA L SECT ION FW. ~J

Reporting Errors Founc' Wbi le Sal'l(pgirg

The initial Salvager reports all errors found in the Multtcs
directory hierarchy on the on-line printeJ~ by using the
''formline" routine. Error messages for edcb segment ure
preceded by the full path name of the segment being salvaged.
This name is maintained in static stora~e. As the salvager
"pushes" recursively into the Multics hlerarchy, name
components separated by 11) 11 are added to the segment path
name. f:.\s it "pops" out of the hierarchy, name components
are removed. Thus., the correct path name of the segment
being salvaged is al\rJays available. It is intended th.:::~t
error comments will be self-explanatory. (sec MOSN 50).

Validation of Pointers

Directories contain many pointers to different types of
data structures. The validity of each of these must be
subject to suspicion when referenced by the Salvager.
In order to prevent unexpected faults or scrambled
directories during salvagingJ each pointer must be validated
before use by the Salvager. The most important criterion
for a pointer is that it points into a page assigned in
the Multics partition. It may not point to an unassigned
page since a reference to such a page would cause the
Multics file system to assign that page to the Salvager
partition. Also., the data structure pointed to by the
pointer must not reside on unassigned pages, and the address
of the end of the data structure must not be out-of-bounds.
A Salvager primitive exists which will validate a pointer.
The size in words of the data structure is also supplied
as an argument to this primitive. Each entry in the file
map corresponding to a page occupied by the data structure
is examined to insure that that page is assigned. In
addition., this primitive checks relative pointers to insure
that they are not zero. An error code is returned if
any of the above criteria are not met~

Conclusion

The initial Multics Salva~er is designed to correct articipated
problems in the Multics d1rectory hi~rarchy after a system
crash. It is expected that there will be several unforeseen
problems that will appear when the Salvager starts to
be used extensively. As experience is gained in the use
of the Salvager, some of the algorithms qescribed. abov~
may require modification in order to correctly handle
these contingencies.

