
r-

TO:
FROM:
SUBJECT:
DATE:

MSPM distribution
K • J . i'1a r t in
8~.0.00, Overview: Use of Commands in Multics
February 2, 1967

Section BX.O.OO has been updated to incorporate changes
which have taken. place elsewhere in Multics. These changes
are: specification of sym~ol tables, specification of
the segment housekeeping module, replacement of meta-arguments
with interjected commands, and specification of system
options.

r

t·1ULTICS SYSTEr4-PROGRAMMERS' HANUAL SECTION BX.O.OO PAGE 1

Published: 03/04/67
Supersedes: BX.O.OO, 01/27/66

I dent if icat ion

Overvie~.rJ: Use of commands in tviu 1 tics
D. Eastwood, G. Schroeder, R. Sobecki

Purpose

This paper attempts to define the various modules which
make up the ~1ultics command structure. The various
responsibilities and features of these modules are discussed.
in the light of console usage and absentee usage.

How to Get Started

After a user is logged in (see BQ.3.02 for a discussion
of logging in and BX.3.01 for usage of the login command)
he begins in a procedure called the listener. The listener
is equivalent to a read loop on the device from which
the user wishes to issue commands -usually this device
is a 1050 or Teletype console. In this paper console
will be used to denote th~ command input device. When
the listener reads a complete message, it calls the shell
procedure.

When the listener is the current active procedure in 3
user's process, the user is said to be at command level.

The shell is the procedure that receives a completed message
from the listener. This message is interpreted by the
shell as a call to a procedure.

functions of the Shell

The shell takes the character string of a message from
the listener and breaks it into substrings according to
syntax conventions described in BX.1.00. The first substring
is assumed to be a procedure name. If the name is of .
the type segment$entry (the shell recognizes~), the linker
is called to establish linkage between that <segment>~[entry]
and the shell. The linker returns a pointer to a fault
word pointing to the newly established linkage section.
If the first substring of characters has no $ in it, the
assumption made by the shell is that the user is calling
a segment and entry of the same name. Linkage is established
then for segment~segment.

MULT ICS SYS TEtJ1-PROGRAtv1MERS' rJ\ANUAL SECTION BX.O.OO PAGE 2

The Shell also reads the symbol table associated with
the specified segment for a description of the parameters
for the requested entry within that segment. See 80.1.00
for a description of the symbol table format.

The rest of the substrings of the user's message are assumed
to be arguments to the procedure requested. Using the
data description of the parameters associated with the
procedure entry~ the shell attempts to convert the argument
strings to the form expected by the procedure. If at
this point the shell detects an invalid argument 1 it signals
its caller that an error has occurred.

After the arguments have been set up by the shell in the
specified form for the procedure~ a call is made to that
procedure by performing the instructions which save the
bases and registers~ establish the argument list 1 and
save the return 1 then transferring to the fault word returned
by the 1 i nker 1r1hen 1 i nkage vJas es tab 1 ished.

The segment is located by the segment housekeeping module~
usually with the help of the search module. The data
base that controls the search module can be provided by
the user; the algorithm for finding needed segments is 1

therefore~ under user control. Of course there will be
a default search algorithm provided by the system. See
BX.13 for a discussion of user control of searching.

After a call to the requested procedure is successfully
made by the shell 1 that requested procedure is in control
of the user's process. The shell does not gain control
again until that procedure returns to it 1 or calls it.
The requested procedure may perform many functions for
the user~ accepting input and giving output to the user.
Usually this input and output is done on the device from
\'1/h ich the user issues commands 1 a 1 though he may specify
other devices. The procedure uses stream names for I/0
with the user; the actual device being used is usually~
therefore~ of no concern to the procedure. When the requested
procedure completes its task 1 it returns to the shell.
The shell returns directly to the listener; the user
is then at command level.

r

MULT lCS SYSTEr-1-PROGRM·11\1ERS' MANU.Q.L SECTION BX.O.OO

The shell~ then, can call any procedure for the user;
provided:

PAGE 3

1. The request for the call is in a form understood
by the shell (i.e., the request must obey the syntax
rules of command language),

2. The arguments can be properly converted by the shell,

3. The procedure can be located by the segment housekeeping
and search modules.

System Options

One of the facilities of the command system is the definition
and maintenance of svstem ootions. System options are
a grab-bag of features which control certain aspects of
the behavior of Multics tovJard an individual user. For
instance, the user may or may not get listings from compilers
and assemblers depending on how he sets a particular system
option.

System options are set by using a special command. They
are maintained in a special data base belonging to the
user, and they are checked by those system commands to
which they apply. System options may be set permanently
or for the duration of a console session, i.e., until
the user logs out; furthermore options can be temporarily
reset for the duration of a procedure through the use
of a feature of the command language called the interjected
command (see BX.1 .00). For a further discussion of the
use of system options and for a discussion of how this
feature can be extended to ~-def 5.ned oot ions, see BX. 12.

The Special World of System Commands

Although the shell may call any procedure specified by
the user, it will be used mostly for calling svste~ commands.
A system command is a procedure "'Jhich is maintained by
system programmers in a special directory, the Multics
Command and Subroutine Library. The system commands are
utility procedures which allow the user to use the facilities
of the Multics system with minimum difficulty. One way
to put it is that these procedures describe the Multics
system to the user; they are written by professional programmers
for the convenience of the averaae console user.

r

MULT ICS SYS TEt-1-PROGRAMt-'lERS' MANUAL SECTION BX.O.OO PAGE 4

Since the system commands are independent procedures written
by many individuals~ it is an administrative task to make.
the commands a coherent unit with convenient standards.
There are some obvious rules to follow in doing this task.

1. There should be a standard editing facility for text.
This editing program should be callable by any system
procedure that wishes to use it. .

2. There should be standard handling of all common errors.

3. All commands must respect system options.

4. All commands must be able to accept input from and
give output to all feasible I/0 devices.

For a more complete list of rules~ see BX.0.01.

Perhaps to summarize this section one can say that users
must receive consistent~ courteous~ and reliable service
from system commands.

Absentee User Processes ·

In t-1ultics 1 it \/'Jill be possible to run absentee~ processes.
An absentee user process is one which has attached to
it no I/0 device operated by a person. There are many
problems attendant to operating such a process correctly.
The most obvious problem is perhaps input and output for
the user's requested procedures and for the listener.
The solution to this problem is to designate standard
stream names for user input and for user output. These
stream names can be attached by the user to files in his
directory to which he has proper access.

Another difficulty is that many procedures wish to ask
questions or make requests and expect ans\rJers. Sometimes
the questions or requests may be unexpected~ and a user
preparing an absentee job would be hard put to prepare
for them. A proposal for solving this problem is to require
all procedures that wish to ask questions .to respect a
OQ-~uestions option the user may set. This means that
all system commands that l;vish to ask questions must define
a default action requiring no input from the user in case
this option is on.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.O.OO PAGE 5

Summary of the Multics Command Structure

The shell is exactly what its name implies, i.e., a thin
layer between the user and the procedure being called.
For all practical purposes it is invisible to the user.
It handles some errors for the commands and it controls
segment housekeeping.

What the shell cannot do is control the execution of commands~
the shell merely passes control to commands. The responsibility
for a coherent command system, therefore, lies with the
design of the command language and the commands themselves.

The next section of this manual attempts to outline rules
for command writing that hopefully serve as guidelines
for building a coherent and useful set of commands.

