
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.01 PAGE 1 

Published: 01/09/67 

Identification 

Macro Facility for Command Language 
G. Schroeder and D. B. Wagner 

Reference 

The user must be familiar with BX.1.00 Multics Command 
Language. 

Introduction 

When usin~ an on-line system~ one usually finds that there 
are certa1n sequences of commands that one issues over 
and over with only minor changes in arguments. The ability 
to define, such command sequences as macros 1 then to invoke 
such a macro by typing the macro name and a list of arguments 
to be substituted into the command sequence~ provides 
two major conveniences: 

1) economy of typing 

2) economy of thought; i.e. 1 a complicated sequence of 
commands need be thought out only once; once defined 1 

the sequence can be considered as a whole. 

Perhaps the more obvious feature which must be included 
in a macro facility for a command language ~s the ability 
to declare certain arguments within the body of the macro 
to be bound variables and to substitute for these bound 
variables at the time the macro is invoked. r-1acros of 
commands should be definable such that the user can substitute 
for grguments to commands within the macro and for names 
of commands within the macro. 

Another obviously useful feature is the ability to execute 
commands conditionally within a macro. One can easily 
envision a macro such that the failure of one command 
within it would cause the user to wish not to execute 
the rest of the sequence. It should be possible to express 
such a condition and have the macro behave properly when 
invoked. 

The Control Commands 

The above features are provided through the 11 control statements11 

of the macro package. These "control statements" are 
actually commands. Obviously the number and complexity 
of control statements can- and will -grow~ but the following 
is a summary of a basic set: 



,',-...., 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.l.01 PAGE 2 

macro_arg 2 b £ ..• 

specifies names of the bound variables in the text following. 
Macro_arg causes all occurrences of the strings~~ b~ · 
£, etc., which stand alone to be replaced by the corresponding 
arguments given in the macro call. A string is said to 
stand alone when it is delimited by ASCII characters that 
are not alphabetic or numeric and not the underscore (_). 

create 2 b £ ..• 

causes special symbols to be created and substituted for 
2~ b~ £~ etc., in the text following. Created symbols 
are produced by concatenating the strin;J ''crs_11 with a 
strin;J obtained using the "unique ident1fier generator" 
descr1bed in BY.15.01. They are always distinct from 
each other and have a very good chance of being distinct 
from other file names~ variables, etc. which are used 
in the macro. 

Use of created symbols makes it possible to freely use 
temporary variables and files with names which are irrelevant 
outside a given macro~ without worrying about naming conflicts. 

The sequence 

iterate~ list 'command sequence' 

causes the text included in command sequence to be repeated 
several times over~ once for each element of Jist. On 
each repetition the corresponding element of list is substituted 
for every occurrence of the strin~ ~ standing alone as 
an element of a command. Iterate s can of course be nested 
to any depth. 

The command 

conditional ~ 'command sequence' 

causes the specified command sequence to be a part of 
the macro expansion only if the string A is not a string 
of zeros (A is normally the value of an immediate value 
command such as value~ see below). 

Two commands which will be useful in conjunction with 
the conditional command are setvalue and value~ which 
maintain a data-base of variable-names and associated 
va 1 ues. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.01 PAGE 3 

setvalue A string 

establishes A as the name of a variable with value given 
by string. Then the immediate value command 

(value 'exoression'J 

evaluates the arithmetic expression given, which may include 
variables established using the setvalue command, and 
returns a character-string representation of the value. 
In particular the command 

conditional walue 'a< b + c'] 'line' 

causes the line to be included in the macro expansion 
if and only if the values of the variables 2, b, and£ 
satisfy the expression a<b+c. Rules for evaluating expressions 
such as a<b+c will be established later. 

A macro is defined by issuing the command 

macro macro_name 

where macro_name is the name of a file which contains 
a series of commands including macro control commands. 

Macro will write a linkage section for the file being 
defined as a macro. This linkage section defines the 
symbol which is the name of the macro with a sp~cial class 
number. The macro file itself is not altered. 

When the Shell attempts to build linkage to this macro 
the linker returns the class number of the symbol. The 
Shell thereby knows that a macro is being invoked. 

The macro is invoked by typing 

macro_name arg1 arg2 ••• 

Where macro_name is the name of a file containing a macro 
which the user has previously defined with the macro command. 

As explained above, the Shell can tell that a macro is 
being called instead of an ordinary command. The Shell 
then calls the macro processor with command name (macro_name) 
and the arguments (arg1 arg2 ••• ). The Shell executes 
any interjected commands itself and does not pass them 
to the macro processor; in fact the Shell does a full 
syntax analysis of the command and passes the arguments 
to the macro processor. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.01 PAGE 4 

The macro processor is divided into two procedures: the 
macro initiator and the macro executor. 

The macro initiator sets up two data bases: 

1) commands to be executed 

2) a key to string substitutions to be made 

These two data bases are shared with a procedure called 
the request handler (see BY.4.01), which actually performs 
string substitutions on demand and which also does various 
manipulations of these two data bases at the behest of 
the control commands. 

The macro executor is called by the Shell when the Shell 
detects a macro. The macro executor calls the macro initiator 
to set up the two data bases described above. lt-Jhen the 
macro initiator returns, the macro executor calls the 
request handler to get a command line. The macro executor 
calls the Shell with the string returned by the request 
handler. The command which the Shell calls may be an 
ordinary command, or it may be a macro control command, 
or it may be another macro invocation. The Shell and 
the macro executor never know the difference; the macro 
control command simply calls the request handler to adjust 
its data bases. When the request handler returns, the 
macro control command returns to the Shell which returns 
to the macro executor. The macro executor then calls 
the request handler to get the next command, etc., until 
there are no more commands in the macro to be executed. 
The macro executor then returns to its caller, the Shell. 

Figure 1 shows hm\1 the Shell, the macro executor, the 
macro initiator, and the request handler interact. The 
first data base (0 in the figure) contains a stack of 
•• bunches•• of commands. Each bunch in this stack is a 
list of commands - probably the text of one macro. 

The second data base (Sub in the figure) contains a key 
to the string substitutions to be done in the macro. 
This is also a stack-pushed down on each occurrence of 
a new macro. The macro initiator sets this up from the 
macro_arg statements and the list of arguments given when 
the macro was invoked. After completing this task, the 
macro initiator calls an initialization entry (E1), in ° 
the request handler. When the request handler returns, 
the macro initiator returns to the macro executor. 



MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.1.01 PAGE 5 

The macro executor ~ets commands from the request handler 
(entry E2) until 0 1s empty. The macro executor calls 
the Shell to execute each command. When it is finished, 
i.e., 0 is empty, the ~1acro executor returns to its caller, 
the Shell. Control commands (called by the Shell) call 
the request handler at another entry (E3) to make changes 
to 0 and Sub. 

There are certain commands such as the debugging commands 
and the context editor which are highly interactive. 
When executing, these commands accept requests from the 
user which are essentially subcommands to the command 
in control. The ability to include requests to a command 
within a macro appears to be a desirable feature. Although 
on the one hand, it is desirable to be able to include 
the requests to an interactive program in a macro, it 
is undesirable to ~ required to include the requests 
to an interactive program in a macro. 

The user may include in the call to an interactive command 
in a macro the information that his requests are contained 
in the macro. (This could be controlled on an option.) 
In this case the interactive command will call the request 
handler for successive requests. 

The request handler, of course, cannot tell the difference 
between commands that should go to the Shell and ''subcommands" 
which should go to an interactive program. The request 
handler simply makes up the next command line from its 
data bases and returns it whenever it is called through 
its E2 entry (see figure 1). It is the responsibility 
of the interactive command to realize when it should get 
commands from the request handler and when it should not. 

Interactive commands can use this facility only if they 
are documented in such a way that it is clear to the user 
that the requests to the command ~ be included in a 
macro. All commands obviously will not wish to provide 
the ability to include requests to the command in macros. 
This ability makes sense only for commands such as the 
debugging commands and the context editor. 

Figure 2 shows how an interactive command fits in with 
the mechanism described in Figure 1. 

It might sometimes be desirable to switch back and forth 
between sources of requests and commands - sometimes the 
macro file should be the source, then sometimes another 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.01 PAGE 6 

stream (probably that one connected with the typewriter). 
This can be done by an additional control command: 

include stream_name 

This command sets a switch in the request handler which 
causes it to read stream name for successive lines instead 
of taking items from Q. 

The control command 

end_ inc 1 ude 

causes the request handler to again take items from Q. 

An end-of-stream return on a call to read stream name 
also causes the request handler to revert to reading Q. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.,.01 PAGE 7 

~~ Sh+_ell 11---F:o~:ro-1 -
_ . Command 

E3 

~:~-B_E2 --t v 

:Hacr:--l· ;; , ---- ,.---R;'-eq_t_;te'-s-t~~ 
Initiatorr. :::- Handler 

---G)- --t.___ ___ _ 

Figure 1 

·,~ • 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.,.01 PAGE 8 

l ,, ,. 
... Interactive 

rl -1 

Connnand 
Shell Control Command 

,, 
Macro 

E3 L-.-

E2 + Executor , ,. ~e--- Request _ E2 
~ -... -!Macro ~ Handler 

Initiator--- -0' ~ ~ 
-t 

Figure 2. 

• 


