
MULTICS SYSTEM-PROG~/\M'1ERS' ~NUAL SECTION BX.17.01A PAGE 1

Published: 12/15/f7

I dent i fica t i on ·

Addendum to BX.17.01
E • \rJ • Meyer_ Jr.

Purpose

The implementation of the loader invoked by the gecos_seg
command is discussed.

Implementation

The loader which operates as part of the gecos_seg command
is a one pass loader which loads successive GMAP programs
into a created Multics segment from the highest location
downward and makes proper interprogram links. None of
the GECOS standard options or debugging facilities are
available_ nor is a library search made. Only the preface
and t~xt cards are recognized; all others are i9nored.
On-line error messages are confined to errors w1thin the
loader program itself_ such fatal errors as segment full
o~:misplaced preface card_ and a listing of all undefined
SYMREFS following the loading of the program.

The cont.rol 1 ines must be ordered as follows:

(a) one "segment_size n" control line

(b) one or more "object beta" control lines.

(c) any number or none of the following (in any order):

"reference_in gamma delta"

n ca ll_i n gamma de 1 ta"

"ca ll_out gamma de 1 ta"

The loading process operates by sequentially reading the
control lines and performing the action designated by
each. ·

The control line

segment size !1

MULTI CS S YS TEM-PROGR.L\MMERS' MANUAL SECTION 8X.17.01~ PAGE 2

creates and initiates text and linkage segments alt:~ha
and alpha.link in the process directory, deletinq any
old copies which may exist. It also initializes-the loader
by setting to zero the length of the currently allocated
BLANK COMMON region (which runs downward from <alpha>IO)
and the program region (which runs downward from <alpha>ln),
and clearing the definitions and linkage tables (see below).

The control line

"object beta"

initiates the object deck segment beta.635object and starts
the loader, reading preface and text card images from
the object segment and processing them.

The processing of the preface and text cards involves
the use of three internal tables declared within the procedure

11 tbl 11 :

Definitions Table (def)

del , def (d_top) based (d_pntr),

2 sym bit (36),

2 val fixed bin (18) ..

2 xlk fixed bin (18) ..

2 sdef bit (1);

I* external symbol *I

I* value of sym *I
I* index to undefined

symbo 1 chain .,'(I

I* defined switch *I
11 def11 is a linear array of substructures, each consisting
of four elements:

sym- a six character bed symbol designated as a SYMDEF,
SYMREF, or LABELED COMMON type external symbol within
a preface card.

val -the relocated value of this symbol. In the case of a
SYMREF, the value is undefined prior to encountering
the corresponding SYMDEF.

xlk - zero unless the symbol is undefined and fields
involving it have been loaded into the created
procedure segment. In that case xlk is an index to a
list in the lnk table (see below) of the fields in the
loaded program which require the value of this symbol.

sdef -a switch indicating whether or not the value has been
defined. "O''b =undefined; "1"b =defined.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 8X.1'.01A

It is appended to whenever an external symbol entry which
dbes not already exist in def is encountered on a preface
card. The definitions table is maintained throughout
the loading process; it is cleared only through the action
of the "segment_size n" control line.

Reference Table (ref)

del ref (r_top) fixed bin (18) based (r_pntr);

The reference table is a linear array of indices to symbol
substructures within "def". It is cleared upon encountering
the first preface card of a new subprogram. Each SYMREF
or LABELED COMMON symbol encountered thereafter within
the preface card group causes an index to the symbol's
position in "def" to be appended onto the reference table.
Thus a text card entry using the jth external symbol reference
declared within the preface card(s) need only refer to
it by the number j. The symbol's position in "def" can
be picked up from ref(j).

Linkage Table (lnk)

del 1 lnk_st(l_top) based (l_pntr),

2 xlnk fixed bin (18),

2 xtseg fixed bin (18) 1

2 1 r bit (1) , -
2 p_m bit (1) ;

f·k index to next
substructure in
the list~·-;

;··· " index to loaded
program word I

"

/i'(left/right switch

;··-" plus/minus switch

It may happen that during the loading process a program
with SYMREF external references is loaded before all those
SYMREFs have been defined via SYMDEFs in the preface cards
of other subprograms. V.Jhenever a text card entry that
uses such a SYMREF is encountered, the "def'' entry for
that symbol will be found to have an undefined value.

If this is to be a one pass loader, there must be a way
to load these fields into the text segment as they are
encountered and later relocate them when the SYMREF is
defined with its syrvv:H-F in a subsequent program. A solution
to this problem is to load the absolute value of the addend
into the program field and to make an entry under a list
for that symbol consisting of the following:

•'·j "

·'·! "

MULTICS SYSTEM-PROGRA~1MERS' MANUAL SECTION BX.17.01A PAGE 4

(1) the address of the field relative to the beginning of the
text segment.

(2) a switch setting indicating whether the field is in the
left or right half of the word.

(3) a switch setting indicating whether the sign of the addend
is plus or minus.

II'Jhen the external symbol is eventually defined by a SYMJEF
entry in a subsequent program's preface card, the loader
will go through the loaded field list for that symbol
and properly relocate the listed fields using the newly
defined value of the symbol. Subsequent fields using
that SYMREF will be relocated and loaded directly.

The linkage table contains the loaded field lists of all
undefined SYMREFs. It is essentially a free pool of substructures
within an allocated structure. Each substructure is either
unused (in which case it is chained to a free substructure
list) or 'it is an entry in the loaded field list of some
undefined SYMREF. Each substructure that is part of such
a 1 ist contains the three elements 11 xtseg", '' l_r", and
"p-~' describing the position of the field requiring relocation
and the sign of its addend, and also the index "xlnk11

to the next entry in the list. The last entry in each
1 ist signals this fact with "xlnk" = 0. An index to the
first entry in each list is contained in the substructure
11 xlk11 of the corresponding SYMREF 's entry in the definitions
table.

Figure 1 illustrates the relationship between "ref", "def11 ,

11 1 nk11 , and the program segment.

The Preface Card

A preface card signals the beginning of a new subprogram.
When it is encountered, space for the new program is allocated
in an area of the text segment just below the previously
allocated program region. The BLANK COMMON length becomes
the maximum of the current length and the requirements
of the new program. If the new program and BLANK COMMON
regions intersect following this allocation, loading is
discontinued and a "segment full'' error is signaled.

Next the external symbols on the preface card are processed.
The class code of each entry is checked to determine whether
the symbol is a SYMDEF, SYMREF, or LABELED COMMON, and
the indicated action is taken:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 8X.17.01A

SYMDEF (class code = 0 or 1) -- def is searched for the
symbol. If it does not exist a new structure is appended
onto def to hold the symbol and the value supplied in
its preface entry. If it exists and is already defined,
no action is taken. If it exists in an undefined status
(previously appended by a SYMREF) the SYMDEF's value is
inserted and any existing loaded field list is operated
upon.

F'I'-1GF 5

SYMREF (class code= 5) -- def is searched for the symbol;
if it isn't found, an entry for it with undefined status
set is appended onto def. In either case, the index to
the symbol's position in def is then appended onto the
reference table.

LABELED COMMON (class code = 6 or 7) -- def is sear~~-ed
for the symbol. If it is not found in def, space is allocated
for the labeled common at the bottom of the currently
allocated program region (check for BLANK COMMON and program
region intersection; if so, do a 11 segment full 11 error
return), and a structure for the symbol is appended onto
def with "val" set to the starting cell of the LABELED
COMMON area. If the lABELED cm~MON symbol is originally
found in def, no program space is allocated as a previous
allocation applies. In both cases an index to the symbol's
position in def is appended onto ref.

All external symbol entries are processed in this manner.
When the preface card is exhausted a check is made to
determine whether or not more entries are expected on
immediately following preface cards. If so the next card
is read in (any type other than preface card generates
an error). Otherwise it is assumed that text cards for
the current program follow. The next preface card encountered
terminates the loading of the current program and allocates
space and initiates loading of the new program.

The Text Card

\rJhenever a text card is encountered in the object segment
the program area allocation and external symbol declarations
of the immediately preceeding preface card(s) apply.
The header of the text card provides information as to
whether the text card entries are to be relocated and
loaded into the current program area or into one of the
LABELED COMMON regions declared in the preface card(s).
It also provides a loading address relative to the beginning
of that region for the first text entry. Subsequent entries
are loaded into sequentially higher locations.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.01A PAGE f

Relocation and loading of the text card entries occurs
as described in pp. 21-23 of the G.E. General Loader Manual
CPB-10080. Whenever a field involving an undefined SYMREF
is encountered, the absolute value of the addend is inserted
into the field and a structure pointing to the loaded
field is appended onto the symbol's external linkage chain.
These fields are relocated when the symbol is defined.

It may happen that another header word follows the text
entries of the previous header on the card. In this case,
reload the header information and process the follc:>· ·'ng
text entries accordingly.

The control line

reference_in gamma delta

causes a search of def for the 36 bit GMAP representation
of delta and the creation in the external symbol table
of the ascii symbol gamma and the value of delta found
in def. If delta is not found in def or its value is
undefined an error is generated.

The control line

call in gamma delta

causes a search of def for delta. If it is not found
or is undefined, an error is generated. Otherwise a Multics
save sequence, a GMAP TSX1 <value of delta in def> call
instruction, and a Multics return sequence are appended
onto the bottom of the program region. If this addition
to the program re~ion causes the allocated BLANK cm1MON
and a program reg1ons to intersect, a "segment full'' error
is generated. An entry for garrma and a linkage to the
new call_in sequence is created in alpha's linkage section.

The control line

call_out gamma delta

causes a Multics calling sequence to the external entry
gamma to be created in the text segment under construction.
The first instruction of this sequence h~s the SYMDEF
delta.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.01A

The following GMAP calling sequence is required:

loc TSX1 delta (delta is a SYMREF)

loc+1 <argument>

loc+2 <return location>

The instruction sequence created and loaded under SYMDEF
delta does the following:

(a) saves the return address

PAGE ,

(b) creates a one-argument list consisting of the argument
count plus an its pair pointing to loc+l;

(c) performs a standard Multics call to the external entry
point gamma

(d) (after returning from gamma) returns to loc+2.

After processing all control lines, if no undefined symbols
remain in def, the segments alpha and alpha. link are transfered
from the process directory to the working directory.
Otherwise the segments remain in the process directory
and a listing of all undefined external symbols is printed
out on the user's console.

Options and Error Signaling

The only option relevant to the gecos_seg command is 11 brief".
If it is set on the load map listing will be deleted and
error comments kept to a bare minimum. Gecos_seg uses
the standard error handling mechanism as described in
MSPM sections BY.11.00- BY.11.04. Specific error codes
will be reported in a later addition to this section.

Procedure Segments of the Loader Program

gecos_seg

is the upper level procedure of the loader and is invoked
by the shell upon receipt of a gecos_seg command.

It initiates the control line segment alpha.gecos_seg .
and reads the control lines, calling the proper procedure
to handle each. Upon exhaustion of the control lines,
it transfers alpha and alpha. link to the working directory
or prints an undefined symbol listing.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.01A PAGE 8

tseg.

processes the control line "segment_size n" by creating
the segment alpha, calling link~init to create the segment
alpha.link, and clearing the definitions table. It contains
entries to retrieve and insert cells in the text segment
alpha.

1 ink

contains entries to create the linkage segment and to
add linkage definitions, external symbols, and external
entries to the segment.

ext

processes the control 1 ines "r.eference_in", "call_in" and
11 ca ll_out11 •

object

processes the cont ro 1 1 ine 11 object ~·· . It ca 11 s 11 tob"
(see below) to initiate the object deck sc~ment, and reads
the object deck card images, ca 11 i ng "pref' or 11 text"
(see below) upon recognition of a preface or text card
respec ti vel y.

pref

is called by "object" to process a preface card. If the
preface card indicates that related preface cards follow,
it re~ds these cards itself, and does not return to "object11

until all related preface cards have ben processed.

text

is called by "object11 to process a single text card.
It returns to "object" after all entries on this card
have been relocated and loaded.

next

is called by 11 text" to obtain the fields and relocation
data of the next text card entry.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.17.01A

reloc

is called by "text" to relocate the fields of a text card
entry.

tob

is the segment invoked to deal with card images of the
object deck segment. It contains entries to initiate
the object deck segment beta.635object,. to advance to
the next card image of the segment, and to retrieve data
from the current card image.

tbl

contaiRs all the entries involved in initializing and
referencing the internal tables 11 def11 ,. "ref11 , and 11 lnk11 •

PAGE 9

MULTI CS SYSTEM-PROGRAMMERS' Mll.NUA L SECTION BX.17.01A P/4GE 1 0

text card

-

free }
J.---+

·,reference to.
symref (j) = "symb"

def table

ref table ------· t i '
ll . I
f ___._ _ _)

''syma"

val a

xlk = 0

def sw = l

defined
external
symbol

J

~

lnk table

unused

1/r = 0
p/m 1

0

unused

unused

1
0

-------- -- .-

----------- J

"symb"

valb (undd.)_ >
I

xlk i

def sw = 0 j_,

---=-=----=---~

text
segment
(alpha> --- ·--·-··---------·· --------

undefined
external
symbol

valb-laddll
to replace

--- ~---rthis field

....__ _ __.,. I add 11

valb+lc!.C!l.d?.l
to replace ·
this field

Figure 1. Relationships among the Internal Tables and the Text Segment.

