
TO:
FROM:
SUBJ:
DATE:

MSPM Distribution
K. Martin
BX.2.00~ The Shell
May 26~ 1967

This revision of BX.2.00 incorporates four major changes:

1) The concept of context commands has been added.

2) Housekeeping is done by the listener procedure
(BX.2.02).

3) An argument to the Shell has been added, indicating
whether or not pathnames should be accepted as
command names.

4) The listener procedure is now in the working processo
. Consequently, the Shell uses the standard error

handling mechanism rather than an error argument.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 1

Published: 05/26/67
(Supersedes: BX.2.00~ 09/10/66(

BX. 2 • 00 I 1 0/2 1 I 65)

The She 11

R. Sobecki, G. Schroeder, K. Martin

Purpose

The Shell is the procedure called by any other procedure
that wishes to have an ASCII string interpreted, according
to the rules of the Multics command language, as a command
sequence. Command sequehces are fully de$cribed in MSPM
BX.1.00, Multics Command Language; briefly, a command
sequence is a command or group of commands that the Shell
is expected to execute. ·

introduction

The Shell is called by
i

call shell (comstring, reject_pathnames);

comstring is an ASCII string which is to be interpreted
as a command sequence.

reject pathnames is an indicator to the Shell of whether
- it shou 1 d allow pathnames as commands (" O"b)

or restrict commands to entry names (" 1''b).

The PL/I declaration for the arguments to Shell is

shell: proc (comstring, reject_pathnames)
recursive; del comstring char (*),
reject_pathnames bit (1);

MSPM BX.o.oo, Overview: Use of Commands in Multics, describes
the Shell's role in the command system. A brief review
might be useful here.

The listener procedure reads messages from the user's
command 1nput device (usually a teletype or typewriter
console). Any message read by the listener is expected
to be a command sequence. Command sequence is defined
as several queued commands separated by semicolons, and
finally, a command terminated by a new line character.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2&00 PAGE 2

After the listener has read a line from the command input
device, it scans it to see if it should read another line
to complete the command sequence. The listener looks
for two things to indicate that it must read another line:

1) a new line character <NL> immediately preceded
by the Shell escape character (%).

2) a <NL> imbedded in an imcomplete literal string
(a literal string is enclosed by '').

When the listener has a complete command sequence it calls
the Shell with the command sequence as the first argument.

The Shell interprets the ASCII string and calls the appropriate
commands. When the last command in the sequence returns,
the Shell returns to the listener. The user is now at
command level and so may issue another command sequence.

Implementation

The Shell consists of several procedures. At the outermost
level is the driver procedure. The driver is responsible
for error handling. The driver calls the Command Sequence
Interpreter and Initiator (CSII) to scan the ASCII string
and initiate the command. CSII consists of two phases.
The first phase scans a command sequence and sets up threaded
lists representing a syntactic analysis of the entire
command sequence to be executed. The second phase performs
the command sequence execution. In the second phase,
CSII sets up linkage to and calls the commands in sequence
with argument listso The two phases are necessary to
avoid command execution before the command sequence has
been checked for syntax errors.

CSII contains a number of procedures which accomplish the
syntax analysis of the commands in the command sequence.
They are:

1) scan, which moves the scanning pointer across
~command string;

r

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.2.00 PAGE 3

2)

3)

comlist 1 which interprets commands and lists
within commands;

elementi 1 which interprets and classifies
elements within commands (see MSPM BX.1.00
for a definition of element);

4) separator!~ which interprets separators within
commands (see MSPM BX.1.00 for a definition of
separator).

Another procedure within CSII, comex, builds argument
lists from the results of the analysis of the above
procedures. Comex also calls the commands in proper
order.

Figure 1 shows how these procedures fit together.

'
Driver ~ CSII f-- Comlist Element!

·, 1--

J

Comex

Figure 1

Error Handling in the Shell

I
, ! ~

Separator! Scan

•

The driver procedure in the Shell handles any errors which
occur during the execution of the scanning of the ASCII
string and the attempt to call the required command.
The driver "enables" for all defined errors by making
a series of on condition (error name) statements. When
an error occurs at any level of nesting, control returns
to the outer level of the Shell, the Driver1 by use of
signal condition (error name) statements. The driver
then generates a message for the output stream giving
the nature of the error, sets the error indicator and
returns to the Shell~s caller.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 4

The Shell also handles errors which are encountered during
the execution of a command sequence if these errors are
not specifically provided for within the procedures included
in the command sequence. When a programmer-defined condition
is signaled for which no procedure currently in the stack
has issued an "on condition" statement, the standard system
action is to call a library procedure, unclaimed signal
(BY.11.05). Unclaimed signal prints a message from the
information in the error file (produced by the error handling
procedures in the library; see BY.11.00- BY.11.04), then
gives the user a choice of continuing or issuing a new
command. If the user chooses to continue, unclaimed_signal
returns to the procedure that signalled the error. A
new command may be unrelated or may wish to investi~ate
the error; these two possibilities are handled as d1scussed
in BY.11.05. When the Shell regains control it signals
an error to its original caller. Usually, the Shell's
caller is the listener (see BX.2o02), which does not care
that the Shell intercepted an error. However, other procedures,
such as the debugging aids, may call the Shell and be
vitally interested that an error occurred. The Shell
signals the error for the benefit of these other procedures.

The Threaded Lists Representing. the Command Sequence
' ;

The Shell's procedures set up the command sequence as
a threaded list of data structures in controlled storage.
The list consists of a thread of data structures representing
a command name, the ar~uments to a command~ and any interjected
commands included with1n the command. The name of a command
may be a string, a literal string.t) or an immediate-value
command. An argument to a command can be a string, literal
string~ immediate-value command or a one-dimensional array
(list) of strings, literal strings~ or immediate-value
commands. Interj~cted commands may be interspe~sed with
the elements of an array. Each data structure 1n the
threaded list may represent a string, literal string~
immediate-value command, interjected command or list.

The command sequence may consist of several queued commands
separated by semicolons, and finally, a command terminated
by a new line character. The command sequence itself
is set up as a threaded list of PL/I data structures.
Each of the structures in the command line thread represents
one queued command on the line. The following declarations
describe the threaded list:

r

" i

MULT!CS SYSTEM-PROGRAMMERS' MANUAL

del root_ptr ptr auto;

del 1 element_description ctl (p),

2 next_ptr ptr,
2 data ptr ptr

SECTION BX.2.00 PAGE 5

2 etype bit (4), /* 0001 = string
0010 = literal string
0011 = immediate-value command
0100 = interjected command
0101 = list */

2 ecount fixed;

del 1 element ctl (q),

2 size bit (9),
2 data char (q-..element.size);

Root ptr defines the beginning of the thread. Element_
description defines an element in the command sequehce.

The first pointer (next ptr) in element description points
to the next data structure. Next ptr is null if this
is the last data structure in the-thread. The second
pointer (data ptr) points to the data if etype is string
or literal string, or to another thread if etype indicates
immediate-value command, list, or interjected command.

Ecount is null for string or literal string. Ecount contains
the count of elements in a list or command for the other
three types. (Count of elements in a command equals count
of number,of arguments plus one for the command name.)
Interjected commands within either commands or lists are
not included in the count of elements. The commands in
the command sequence are represented with etype = 0011
(immediate-value command) by conventiono

Figure 2 illustrates a thread resulting from the syntactic
analysis of the command sequence:

add ~ypein [printstring 'type argument one'J} arg2 <NL>

Analysis of the Command Sequence

The Command Sequence Interpreter and Initiator (CSII) is
the controlling procedure for the procedures which anlayze
the command sequence and build the thread of element
description structures and for the procedures which execute
commands.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 6

CSII calls comlist to analyze the first command in the .
sequence. Upon return from comlist, CSII checks the current
scan character. If it is "; 11 , CSII calls comlist to analyze
the next command, etc. When, upon return from comlist,
CSII finds that the current scan character is <NL>, CSII
calls comex to execute the command sequence.

CSII threads together the element_description structures
returned by comlist. Each structure in the thread represents
a command in the sequence (see example, p.7).

Comlist

Comlist is called to analyze a string which is expected
to be either a command or a list. Comlist is called by
CSII for each command in the sequence; it is called by
elementi when an element is found that is an immediate-value
command or a 1 ist; and it is called by separatori when an
interjected command occurs in a separator. (A command
language separator is a combination of spaces, comments,
and interjected commands; see MSPM BX~1.00 for a formal
definition).

If comlist is analyzing a command(it removes all labels
before the command. If it is analyzing a list, it does
not look for labels.

Comlist calls elementi to get each element of the command
and calls separatori whenever a separator is expected
in the command, ~~ according to the following definitions
(given in augmented Backus normal form- See MSPM BX.1.00):

<labeled command>: :=<<labe 1> <separator>> <command>
' 0

<comman,d>::=<command name> <<separator> <element list>>
1-

<element 1 ist>: :=<element> <<separator> <element>>
0

When elementi returns after operating on a command name,
comlist (if pathnames are not allowed as commands) checks
the command name for the "greater than11 character (>)
or the "less than'' character (<). If either ">" or "<"
is found, the command name is a pathname and is illegal.
Comlist signals an error to the driver. Optional restriction
of command names to entry names makes possible a class
of restricted users who may not specify commands by pathname.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 7

rre:xt_ptr=null

data_ptr ~ next_ptr

etype=OOll data_ptr .. G
ecount=3 etype=OOOl

~ next ptr

data_ptr ~ next_ptr

etype=OOll data_ptr ~[type in I
ecount=l etype=OOOl

~ next_ptr=nul

data_ptr ~ next ~ptr

etype=OlOO - data_ptr

ecount=2 etype=OOOl

- next_ptr=null ~~rintstring -
data_ptr ~~ arg21

etype=OOOl 411- next_ptr=nul

data_ptr

etype=OOlO ,,
type ~1\@ument I

Figure 2

,...

MULTIGS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 8

When either elementi or separatori gives a return to comlist
indicating that no element or no separator was found,
comlist returns to its caller. Comlist constructs a thread
of element description structures representing the elements
of the command and any interjected commands found within
the command and returns a pointer to this thread to its
caller.

The PL/I declaration for the arguments to comlist is

cornlist: proc (eletype, lblind, cl_ptr) recursive;

del eletype bit(4), /* 0011 = immediate-value command.,
0100 = interjected command,
0101 = list ..,'r/

'lementi

lblind bit (1),/..,'r 0 =no labels 1 =check for labels..,.,./

cl_ptr ptr;/* returned by comlist; pointer to structure
representing command or list found *I

Elementi is called by comlist to find and classify elements
in the command or list being built by comlist. Elementi
determines which type of element it has by noting punctuation
and builds a proper element description structure. Elementi
is called with three arguments. The following is a PL/I
declaration for the arguments.

elementi: proc (lstind, struct_ptr, no_elem) recursive;

del lstind bit(1).,

st ruct_pt r ..

no_elem bit(1).,

I* 1 = list allowed as element
0 = no lists allowed*/

I* returned by elementi;
a pointer to structure
representing element found */

I* returned by elementi;
0 = element found;
1 = no element found *I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 9

Separatori

Separatori is called by comlist to find and skip over
separators in a command. Separator! skips over spaces
and comments and looks for interjected commands. When
separator! discovers an interjected command# it calls
comlist to an~lyze the command. Separator! threads together
all interjected commands found in a single separator and
returns a pointer to this thread to its caller.

The PLII declaration for the arguments to separator! is:

separatori: proc (lsind# beg_ptr# end_ptr# no_sep) recursive;

del lsind bit(1)#

beg_pt r pt r,

end_ptr ptr#

no_sep bit(1);

Scan -

I* 0 = ordinary separator expected
1 = left space type separator
expected *I

I* returned by separator!;
pointer to beginning of thread
of any interjected commands
found */

I* returned by separator!;
pointer to last structure in
thread of interjected commands *I

I* returned by separator!;
0 = separator found
1 = no separator found *I

Elementi and separator! rely heavily on the scan module.
The scan module does the scanning of the command input
string.

The scan module has four entries to accomplish various
scans:

1) Scan skip skips one character;
2) Scan:string scans to the end of a string;
3) Scan litstr scans to the end of a literal string;
4) Scan:cmnt skips to the end of a comment.

Scan also recognizes and treats the Shell escape character.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.2.00 PAGE 10

The arguments to all the entries are the same.
is given as an example.

Scan skip -
scan_skip: entry (cstring- scsubstr- scptr- scind);

del cstring char(*)

scsubstr char (*) varying-

scptr fixed-

scind char (1);

Executing the Commands

I* The command string */

I* Set by scan string and
scan itstr to contain string
or 1Tteral string found;
scan skip and scan cmnt leave
scsuostr unchanged-*/

I* index of current scan
character in cstring */

I* contains current scan
character if it is punctuation;
otherwise- null */

CSII initiates its command execution phase as soon as
it encounters in the command sequence a <NL> which is
not included in a literal string nor immediately preceded
by a Shell escape character. CSII examines the data-ptr
in the element description pointed to by root ptr1 if
data ptr is non-null- CSII calls comex with a-pointer
to e1ement description. When comex returns- CSII determines
whet'her there is another element description threaded
to the one just operated on by comex; if there is another,
CSII again calls comex with a pointer to that element
description; and so on until CSII comes to the end of
the thread. CSII then returns to its caller.

Comex

The PL/1 declaration for the arguments to comex is:

comex: proc (c_ptr, c_value) recursive;

del c_ptr ptr,

c_value ptr;

I* pointer to first structure in
a thread representing command to
be executed ·kf

I* returned by comex; pointer to
value returned by command execute*/

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BXe2.00 PAGE 11

Comex examines the structure pointed to by c ptr. It
calls a program which pushes down the user's-option data
base if the command is an immediate-value command. The
first element description structure in the thread which
has etype equal to string, literal string or immediate-value
command is interpreted as the command name. If etype
for this element description indicates an immediate-value
command, comex calls itself to evaluate the immediate-value
command. The value returned by comex is assumed to be
a string representing the command name. The commandname:
is scanned for "$"; the substring to the left of "$11 is
assumed to be a segment name and the substrin~ to the
right of "$" is assumed to be an entry name w1 thin that
segment. If no"$" is found in the command name, the
command name is presumed to be both the name of the required
segment sng the required entry point. Comex calls
link change$make link (BY.13.03) with the segment name
and entry point name representin~ the command to be called.
The procedure link change$make_llnk returns a pointer
to the linkage fault it has just built representing the
command to be called. Comex sets up the argument list
for a standard call (with all arguments as varying strings),
building appropriate data specifiers and dope vectors.

I

If a list is encountered, the elements are set up as an
array of varying character strings and appropriate data
specifiers and dope vectors are built. If an immediate-value
command is encountered as an argument or as an element
of a list, comex calls itself. Upon return, it obtains
the value pointer, c_value, and stores it in the argument
list if the immediate-value command was a command argument.
If the immediate-value command occurred as an element ·
of a list, the value returned by comex is interpreted
as a character string. The string is added to the array
of strings. This process continues until all of the arguments
have been set up. Space for one additional argument pointer
is always allocated. This is the argu~.r.t pointer in
which the pointer to the value of the cammand is storedo
When the a rg umen t 1i s t is comp 1 e te, comex ca 11 s the corrmand
requested using the pointer to the linage fault returned
by linkmk. The pointer to the value returned by the command
is stored in c_value and comex returns to its caller.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL PAGE 12

Context Commands

Sometimes it is useful to think of an interjected or immediate
value command as being called in the context of another
command. The command name in the immediately preceding
nesting level of the command sequence is defined as the
context command. Interjected commands which set global
options (see 85<.12.00) are an example of commands that
need to know the name of their context command. In particular~
the interjected conmand~ brief~ which sets the brief option
may be called within the command~ alpha. The briefcommand
wants to know the command name~ alpha~ in order to set .
the local option~ alpha.brief~ as well as the global option~
brief. Both the local and global options are set so that
alpha is sure to find brief properly set and other procedures
(which do not check alpha.brief) find the option set globally.

When an interjected or immediate-value command occurs
as the first element in a nesting level~ its context command
is null. No command name has appeared at that immediately
preceding level to be defined as the context command.
The case of an interjected or immediate-value command
as first element of a command is a special case of the
above situation.

~ Implementation of the context command facility is by means
of the signaling mechanism of PL/1. The procedure CSII
executes an 11'.on condi tion11 statement defining the current
context command before calling the procedure comex~ and
comex executes an "on condition11 statement shortly after
being called. The recursive nature of comex results in
a stacking of on conditions corresponding to the nesting
in a command sequence.

When a command wants to know the name of its context command,
it mere 1 y 5 igna 1 s the defined condition, The 11 on unit"
sets an external static pointer to the appropriate value--the
null pointer if the context command is null; a pointer
to the name of the context command if it does exist.

Immediately before calling a command at a given nesting
level~ comex executes a 11 revert 11 statement~ causing the

11 on condition11 of the previous comex (that is.~~ for the
immediately preceding nesting level) to be in effect.
The 11 revert11 in the first level of comex causes the 11 on
condi tion11 in CSI I to be in effect 0

