
,• MULTICS SYSTEM-PROGRAMMER'S MANUAL

!dentlficatjoo

The BCPL command
D. t-1. Ritchie

purpose

SECTION BX.7.06 PAGE 1

PublIshed: 9/25/68

This section describes the use of the BCPL command. For details
on the language itself, see MSPM BZ.6.

Usage

The user types the command

bcpl segoame -(optl ••• opto)-

which invokes the BCPL comp 11 e r to comp i 1 e a segmeo t named
"se2;oame. bcp 1 ". Segoame may be an entry name, In whIch case It
is assumed to be in the user's working directory, or an absolute
or relative path name. Ootl, ••• , opto are options for the
compiler; none of them need be given. These will change their
format when the regular option mechanism is available.

Except as modified by options, the compiler will leave in the
user's working directory the following segments:

segname.source
-- which contains a printable
complete with 1 Joe numbers
comments.

segname.error

1 !sting of segname.bcpl,
and interspersed error

-- which contains a printable 1 lstlog of the error
comments from the compiler.

segoame
--which Is the text segment from the compilation.

segoame.l ink
--.which is the 1 lnkage segment.

segname.l ist
-~-which is the assembly 1 istiog of the compiled code.

The last three of these are actually produced by EPLBSA, which ts
called automatically by the compiler unless suppressed.

I..bJ:. Options

The following options are available. From time to time various
other options may appear and go away, but these will be useful
only for debugging the compi~er and not will not be 1 isted here.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BX.7.06 PAGE 2

old
--the Qlg option causes the compiler to accept the old
BCPL syntax, which is almost exactly a superset of CTSS
BCPL syntax. This option should be used for all
programs brought over from CTSS. See below for
details.

llstty
causes the compiler to produce its ".source" segment

onl lne instead of In a special 1 lstlng segment.

errtty

pname

nob sa

causes the compiler to produce all its comments on
source code errors online Instead of in the ".error''
segment.

-- causes the compiler to produce,
".source" segment, a cross-reference
occurrences of each Identifier in the

as part
listing

program.

of
of

the
the

prevents the compiler from call lng EPLBSA when
compilation Is done. The text and 1 Ink segments will
not be produced; the primary output will be a segment
called segname.eplbsa in the working directory.

savebsa
causes the compiler to leave "segname.eplbsa" In the

working directory even If EPLBSA is called. This
segment may then be assembled at a later time.

Error handl jog

BCPL can generate two kinds of errors: those arising from
syntactic or semantic mistakes In the source program, and those
arising from various file system problems. The first kind are
recorded In the ".source" listing and In the ".error" file (or
onl lne, If the proper options are set), but the second kind of
error Is communicated directly to the console. This type of
error includes: inability to find the Input segment or one of the
"get 11 s e gme n t s (the 1' get 11 fa c I 1 i t y I s 1 I k e " i n c 1 u de 11 I n E P L) ;
inability to create one of the several Intermediate segments In
the process directory; and tnabil ity to move one of the output
segments Into the working directory.

The bcpl command will be changed to use the regular MULTICS error
handling mechanism when this becomes available.

Note that EPLBSA can encounter various difficulties which may
also be reported on the console. See MSPM BX.7.03 for details.

Method

.•

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BX.7.06 PAGE 3

~ The BCPL compiler proper Is written entirely in BCPL. The bcpl
command, since it must call many EPL procedures, Is written in
E PL. I t s task I s essen t I a 11 y t r i v I a 1 : the opt i on s a r e
interpreted, Intermediate segments are created, and the compiler
Is called. On return, the output segments are moved Into the
working directory under the proper name and finally EPLBSA is
called. The command also sets up a stack segment for the
compiler In such a way that no BCPL procedure that the user has
executed or will execute later can Interact undesirably with the
comp i 1 e r.

The compiler operates In three phases: syntax analysts,
translation, and code generation. The first phase produces a
tree representation of the Input program and stores it in the
compiler's stack; the second phase produces an
Intermediate-language representation of the program; this Is
stored In an Intermediate segment. The third phase produces
EPLBSA code.

Space-Time

The BCPL compiler occupies about 35K(10) words of storage,
counting all text and 1 Ink segments. In its present (unbound)
form It consists of 22 segments of which 4 are common to all
phases. Each phase uses about lOK(lO) words, and the phases are
called successively, so that about 15K(l0) are in core at one
time. Using the MULTICS system as of 8/12/68, a 393-line program
took 1:06 minutes to compile, not counting EPLBSA time. This
yields a speed of about 360 lines per minute of CPU time.
Experiments with zero-length programs reveal that about 20
seconds of the time used by BCPL is spent in the bcpl command,
the remainder in the compiler proper. It is hoped that the
former time can be reduced by a more so~hlsticated use of EPL.

As a comparison, to compile the same program Into EPLBSA using
the GECOS version of the BCPL compiler took 40 seconds of
processor time. On the other hand, the real time consumed by the
GECOS compilation was about 2 minutes. This large difference is
traceable to the rather slow disc 1/0 of GECOS.

EPLBSA required about 1:40 minutes to assemble the program
resulting from the 393-llne BCPL program mentioned above.

Notes .Q.D. .t.bJ1 ".Q.J..d" option

Only three BCPL constructions are treated differently depending
on the "old" option. Strings and character constants In CTSS
BCPL are both indicated using single quotes (1). In MULTICS
BCPL, character constants use single quotes, string constants use
double quotes (''); a character constant Is exactly one character
long. With the "old" option on, the CTSS interpretation of the
single quote Is used; with the option off, a string of more than
one character enclosed by single quotes calls forth a diagnostic.
However, the long char~cter constant is compiled in the same way

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECT I ON BX. 7. 06 PAGE 4

as a string constant, .just as In CTSS BCPL. Thus the only effect ..._.
of the "old" option In this case is on the presence of a warning ,
diagnostic.

The symbols "%(" and "%)" (RBRA and RKET) are recognized only
with the "old" option on. These were used for grouping of
arithmetic expressions, but in MULTICS BCPL ordinary parentheses
(,) are used. In MULTICS BCPL with the "old" option off, "%" Is
used as the remainder operator.

The last difference occurs in the treatment of subscripts. In
CTSS BCPL, subscripting Is Indicated by the character sequence
"•(", so "V•Cf)" Is an instance of a subscripted variable.
MULTICS BCPL with the "old" option on treats "*(• ••)" as the
subscript operator; with the "old" option not on, "*" Is always
the multipl !cation operator. The standard way of Indicating a
subscript In MULTICS BCPL Is by square brackets " ••• ", and
this notation Is accepted regardless of the setting of the "old"
option.

The only other way In which MULTICS BCPL falls to be a superset
of CTSS BCPL Is that the arithmetic and logical operators have
slightly different precedence relations. There is no way of
making MULTICS BCPL behave 1 Ike the CTSS version In this respect,
so parentheslzatlon should be used in cases of doubt. (In fact,
this difference Is seldom Important; In the entire BCPL compiler,
much of which Is directly copied from CTSS, there was only one
Instance of different interpretation of an expression.)

