
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

The p 1 1 Command
James D. Mills

Purpose

SECTION BX.7.07 PAGE 1

Published: 02/21/69

The pl1 command invokes the pl1 compiler to translate
a segment containing pl1 source code into text~ link~
and symbol segments. A listing segment may also be
produced. These results are placed in the user's current
working directory.

Rf:ferences

The compiler is described in MSPM BZ.8. The langua~e
is defined in Form Y33-6003-0, PL/1 Language Specif1cations,
IBM Corporation~ March~ 1968. Deviations from the IBM.
specifications are given below under "Language".

Usage

The command

pl1 pathname -opt1- ••• -optn-

invokes the pl1 compiler to translate a pl1 source segment
identified by pathname. (The typed command consists of
the letters 11 pl 11 and the numeral 11 111 .) A directory path
name and on entry name, segname, are derived from pathname
by calling entryarg (Ref. BY.2.04) and the compiler takes
its input from segname.p11. Opt1, •• "~ optn are optional
arguments to the compiler whose interpretation is defined
be 1 ow under 11 Opt ions" •

A normal compilation will produce these segments and leave
them in the user's working directory with ring brackets
1, 48, 48.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BX.7o07 PAGE 2

segnclme

- The compiled text segment 0 Its .access modes wi 11
be set to read and execute.

segname. 1 ink

- The 1 ink segment corresponding to segname. Its access
modes will be read, write, and execute.

segname. symbo 1

- The symbol segment for segname. This will consist
of a segment symbol table header and binding information
for segname, segname. link, and segname.symbol 0

The access mode of segname.symbol will be read.

The user"'s options will control the absence or presence
of the listing segment for segname.pl1 and the contents
of that listing. If created, the listing segment is named
segname.list and has the read access mode.

Provided the compilation is successful, previous copies
of segname, segname. link, se~name.symbol, and (if the
list option is on) segname. l1st are replaced by the new
segments created by the compilation.

Note that because of the Multics standard which restricts
segment names to be not greater than 32 characters in
length, a pl1 source segment name may not be longer than
25 characters. Otherwise, truncation would occur when
concatenating segname with 11 • symbo 111 •

The p 11 command wi 11 look for the presence of "%; 11 as the
first two characters in segname.p11. The presence of
such characters implies that segname.pl1 contains "% include"
compile-time statements. P11, therefore, calls expand_seg
to create a new source segment with all "% include" statements
expanded. The compiler then takes its input from the
expanded results, and the segment segname.expand will
be left in the working directory.

Command Options

In the absence of the full Multics option machinery, character
string arguments to the command provide the user with
a certain amount of control over the output from pl1.
The options are summarized here. Further information
is contained under "Error Diagnostics'' and "Listing".

MULTICS SYSTEM-PROGRA~~MERS"' MANUAL SECTION BX.7.07 PAGE 3

Option

"list"

11 symbo 1 s"

"assemb ly_l ist''

11 b r ief11

11 severity i 11

Error Diagnostics

Result

Pl1 produces a printable ascii
1 is t i nq. The defau 1t is no
list in~1.

If a listin~ is created it will
contain a l1st of all the.
variables declared in the program
with their attributes. The
default is no symbols.

If a listing is produced it will
contain an assembly-like listing
of the text~ link~ and symbol
segments that were compiled.
The default is no assembly listing.

Error messages written into the
stream 11 user _output'' wi 11 contain
only an error number~ statement
identification~ and when appropriate
the identifier or constant in
error. In the normal~ non-brief
mode an explanatory message of one
or more sentences will also be
written.

Error messages whose severity is
1 e s s than i (where i i s 1 ~ 2 ~ 3 ~
or 4~ eg. severity3) will not
be written into 11 user output"
although all errors will be written
into the listing. The default is 1.

The pl1 compiler can diagnose and issue messages for about
350 different errors. These messages are graded in severity
as follows:

Sever i ty Leye 1

1

Meaning

Warning only - compilation continues
without ill effect.

MULTICS SYSTEM-PROGRAMMERS''MANUAL SECTION BX.7.07 PAGE 4

Seve ... i ty Leve 1

2

3

4

Meaning

Correctable error - the compiler
remedies the situation and continues
probably without ill effect. For
example, too few end statements can
be and is corrected by simulating
the appending of a sufficient number
of strings 11 ;end; 11 to the source
to complete the pro~ram. This does
not guarantee the r1ght results
however.

An uncorrectable but recoverable
error. That is, the program is
definitely in error and cannot
be corrected but the compiler can
and does continue executing up
to the point just before code is
generated. Thus, any further errors
will be diagnosed.

An unrecoverable error. The
compiler cannot continue beyond
this error. The message is printed
and then control is returned to the
pl1 command unwinding the compiler.
The command writes an abort message
into 11 user output•• and returns to
its caller:-

Error messages are written into the stream 11 user output••
as they occur. Thus, a user at his console can quit the
compilation process immediately wh~n he sees something
is amiss. As indicated above, the user can set the severity
level so that he is not bothered by minor error messa~es.
He can also set the brief option so that the message 1s
shorter.

An example of an error message in its long from is:

ERROR 281.1 IN STATEMENT 1 ENDING ON LINE 17

The entry name 'zilch' has been declared internal but has not
been defined within the block of declaration.

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.7.07 PAGE 5

If the brief opt·ion h.ad been set the user would see inste.ad:

ERROR 281. 1 IN STA TEM:::NT 1 END lNG ON LINE 17
zilch

In the second case the user could look up error number
281 in his handy error dictionary and get the full message.
The digit after the decimal point in the error number
is the severity of the message. Thus# if the user had
set his severity level to 2 he would have seen no message
at a 11.

If the listing option is on# the error messages are also
written into the listing segment. They appear# sorted
by line number# after the listing of the source program.
Because of an implementation restriction no more than
100 error messages will be printed in the listing.

Listing

The listing created by pl1 is a line numbered image of
the possibly expanded source segment. This is followed
by a table of all of the variables declared within the
program. The var iab h~s are categorized by declaration
type which are:

1. Declare Statement

2. Explicit Context (labels# entries, and parameters)

3. Implicit and Context

Within these cate~ories the symbols are sorted alphabetically
and then listed w1th their location; storage class; data
type; size# precision~ or level; and attributes such as
"initial"# 11 ilrray" # 11 abnormal", 11 internal"# "external''#
11 aligned", 11 unaligned'', and ''irreducible''. The symbo 1 s
are followed by the error messages.

Finally# the listing contains the assembly-like listing
of the text# link# ilnd symbol segments produced. The
executable instructions are grouped under an identifying
header indicating the source statement which produced
the instructions. Opcode, base-register, and modifier
mnemonics are printed along-side the octal instruction.
The addresses are numerical but if an identifier or constant
corresponds to the address it is printed in the "remarks"

MUL TICS SYSTEM- PROGRAMMERS' MANUAL SECTION BX.7.07 PAGE 6

fiel3 of the line. Constants and links are printed with
symb:)l ic interpretation also.

In g•~nera 1, the assernb ly 1 i sting resembles the format
of that produced by EPLBSA with the exception that the
addresses of the generated machine words are ordered sequentially
from location o.
Language

The basic language specification is Y33-6003-0 with certain
restrictions, a few extensions and the definitions of
areas of the language which PL/1 leaves to the implementer.

Language Restrictions

The following features of the PL/1 language are not implemented
in the first version of the Multics pl1 compiler.

1. All input/output features including all related
statements, declarations, on conditions and built-in
functions.

2. Sterling data and pictured data.

3. Taskin~- all related options, declarations, on
conditions and built-in functions.

4. Scaled fixed point arithmetic.

5. Complex arithmetic.

6. Precision control'led aritmetic.

7. Decimal arithmetic is implemented as binary with the
appropriate conversion of the declared precision.

8. Controlled storage class.

9. The attributes: defined, position, like, cell, generic.

10 •. Conversion between character string and arithmetic and
between arithmetic and character string.

11. Aggregate expressions and array cross sections.

12. Check and size condition prefix.

13. Some built-in functions are omitted but the EPL subset
is ava i 1 ab 1 e.

MULTICS SYSTEM-PROGRAt1MERS' MANUAL SECTION BX. 7. 07 PAGE 7

14. Division of fixed point values must be done
using the divide function.

15. Prologue dependencies are not resolved. Values
available upon entry to a block do not include
values declared as automatic in that block.

16. All compile··time statements except% include.

Language Extensions

The following features of the Multics pl1 compiler are,
with respect to the IBM PL/1 language definition, extralegal.

1. The built-in functions inherited from EPL:

STAC

PTR

REL

ADDREL

BASE NO

BASEPTR

2. The built-in functions NULL and NULLO may be used
as values for the initial attribute.

3. The built-in function STRING may be used as a
pseudo variable.

4. Asterisk (*) may be used as an extent for return
attributes written on procedure or entry statements.

Implementation p~finitions

The following features are aspects of PL/1 left to the
implementer to define.

1. The RENAME .;md VALIDATE opt ions are implemented
as options in a procedure statement.

2. The ASCII character set is used. All keywords and
special letters use lower-case letters. Otherwise,
upper and lower-case both may be used and no mapping
is done.

3. The dollar-sign convention of EPL is observed.
That is, a reference to an external variable of
the form a$b implies location b within segment a.

MUL TICS SYSTEM- PROGRAr1MERS' MANUAL SECTION BX.7.07 PAGE 8 ~

4.

5.

6.

An external entry a is understood to be a$a
but an exter·nal static variable v is understood
to be stat_~.v (unless stat_has been renamed
by the rename option). Fir.ally, seg$ implies
location 0 :in segment seg.

The ASCII collating sequence is used.

The double quote (") is used for string constants.

The defaults and maxima are:

~ Defaults Maximum

Float Bin•ry 27 63

Float Decimal* 8 18

Fixed Binary 17 71

Fixed Decimal* 5 21

Bit String 36 * 2 ** 16

Character String 4 ,'r 2 ** 16

*Decimal is implemented as binary. Declared precisions are
converted to binary precisions according to the rules
of the language.

Language Compatibility

The issue of compatibility between this implementation
of PL/1 and the EPL implementation is too extensive to
be covered in this document. It is considered in a repository
document by R. Freiburghouse, Compatibility Considerations
of the PL/1 Implementation, G0081, 20 January 1969.

