
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

CTSS to Multics Transition Aid
adjust
Charles Garman

Purpose

SECTION BX.99.08 PAGE 1

Published: 10/02/68

The adjust command is designed for use by library maintenance
personnel in moving ASCII files from CTSS to Multics.
It is also useful as a debugging tool in "picking up the
pieces•• should a command which creates an ASCI I file fail
to set the bit-count in the branch for the segment (see
Implementation~ below).

D·iscussion

In Multics~ the standard means for identifying the real
a~oun~ of data in a segment is to set the bit-count in
the branch for the segment to the proper multiple of the
element size; in the specific case of ASCII segments (EPL
source~ etc) this value is 9 times the number of characters
in the segment. (All system commands which write. ASCII
segments set this value~ all system commands which attempt
to read ASCII segments read characters up to this value).

In CTSS~ which maintains file lengths to the closest (higher)
word boundary~ the ASCII ETX character (octal value 003)
was chosen as an interim solution for marking the end
of a file whose last character was not in the 4th character
position of the final word. (e.g.~ 073 012 003 000(8)
represents the last word of a file which contains ";<NL>"
as its last two characters~ with the ETX marking the end,
and the 000~ ASCII NUL~ used as a padding character).

The current means of inputting segments in Multics~ from
Multics System Tapes during a Multics Bootload or the
Tape Daemon~ both set the bit-count~ but generally only
to the nearest (higher) multiple of 36~ the number of
bits per word.

The adiujt command remedies the situation by looking at
the segment specified~ starting from the character position
derived from the bit-count~ searching backwards until
it finds the first non-NUL, non-ETX character. (See refinements
under Imple~ntatio?). It then sets to NUL all trailing
characters n the f na 1 word, ti'"uncates the segment beginning
at the next higher word~ and~ if this operation should
result in shortening the segment by 1 1024-word block ,
or more~ it also resets the maxlength. It then re-calculates
the bit-count~ and sets the value in the branch for the
segment.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.99.09 PAGE 2

.usage

{:~j~~i~test } name
adjust block
adjust test_block

name is the name of the segment (to be found in the working
directory if no">" characters are in the string).

adjust merely executes as described.

adlustStest looks at the segment, but doesn't do anything,
it merely prints diagnostic messages indicating what it
would have done had the normal entry been invoked.

adjustSblock ignores the given bit-count and uses the current
length in 1024-word blocks to calculate its initial position

ac:ljust$test_block combines the extra features of $test and
$block.

Implementation

For the various entry ponts, switches are set to control
later program flow.

A pointer to the segment is obtained by calling smm$initiate,
and the current length, maximum length and bit-count are
obtained by calling entry_status$1engths.

If the bit..;count was zero, or one of 11 block11 entries was
called, the number of characters is calculated from the
current length, otherwise the bit-count is divided by
9 to get the character count (if the bit-count was not
originally a multiple of 36, adjust comments that it has
already been invoked for the segment but starts at the
last character of the word). If both the bit-count and
the current length are zero, it checks starting from the
maximum length.

Once the initial character position has been determined
the searching procedure starts:

1 •
I

once every 4 chara·cters, the word index is calculated and
tests are made for the entire word being binary zero! or
for high order bits in any ASCII character position n
the word; if either case is true, all characters in the
word are skipped, and in the case of high-order bits, a
switch is set for later interrogation.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.99.08 PAGE 3

2. for each character, if it is not NUL, ETX, or NL, good
information has been found, and searching stops. If
NUL or ETX characters were found, the character is
skipped and searching continues.

3. if a NL character was found, and if the preceding
character is not NUL, the NL character is the final
character of the segment, and searching stops.
Othenwise, both the NL and NUL characters are skipped
over and searching continues (back to step 1). (This
part of the algorithm deals with an unfortunate inter
action between the OED and ASCII-ARCHIVE commands in
CTSS, which can result In extending the file with an
indefinite number of extra lines containing only NUL
and NL characters.)

Once the searching process has terminated (either in steps
2 or 3, or by searching back to the beginning of the segment
without finding a non-NUL, non-ETX character), several
cleanup steps take place, (either for real< or with diagnostic
messages if the 11 test" entries were called):

4.

s.

6.

7.

a.

9.

characters in the final word, beyond the last usable
character, are replaced by the ASCII NUL character.

if words containing high-order bits were encountered
(step 1) a diagnostic is printed.

!

the offsets of the first word after both the starting
character and the final character are calculatedJ if
the second value is less than the first, the segment
is truncated at that word (i.e., the word after the
last data character).

if the new current length is less than the original
maximum length, the maximum length is reset to the
(new) current length.

the new bit-count is computed from the character
·count and set back in the branch.

the segment is terminated.

Errors

If errors are reflected from the basic file system, execution
stops and control is returned to adjust~s caller (e.g.,
to command leve 1 in the 1i stener).

