
TO: 
FROM: 
DATE: 
SUBJECT: 

MSPM Distribution 
c. Garman 
January 11~ 1969 
Revisions to cv_string 

Attached is a major revision of the documentation of 
cv_string. Note especially that an EPL call to 

cv_string 

is now equivalent to a call to 

cv_string$cs. 

Also of interest is a short tutorial on usage for scanning 
character strings. 

\. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.10.03 PAGE 1 

(Supersedes: 

Identification 

Pub 1 i shed: 
BY.10.03 

01/11/69 
06/23/67) 

Virtual strings; in-1 ine string manipulation and decomposition 
cv_string 
c. Garman 

Purgose 

The purpose of cv,.:_string is (1) to provide the means for 
"converting" all or part of a (possibly varying) string 
into a f ixed_length, 11 vi rtua 1 string", without .moving 
the string, (2) to create a virtual string given an arbitrary 
pointer plus offset and length information, (3) given 
a string, to provide pointer, length and offset information 
for in-line manipulation of short bit and character strings, 
and (4) given a pointer to an ACC-type string (ASCII Character 
with Count, 80.7.01, p3), to create a virtual string pointing 
to the character information on 1 y. 

For (1), (2), and (4) above, "virtual-string" means that 
a string is "created", from thin air as it were, having 
all the properties of a string, but which in fact is an 
"overlay'' on the data region of the source variable. 
The advantages of this approach are generally in the area 
of reduction of actual movement of strings, as well as 
in the performance of tasks which the EPL compiler doe·s . 
not support but which the EPL run-time routines do support. 
Needless to say, there are disadvantages, the prime one 
being mis-use~ for which read_the section titled Warning. 
Bon app~titl 

The basic implementation makes use of a little-known feature 
of the EPL compiler, which is used in the implementation 
of the substr function/pseudo-variable, and as such is 
implementation dependent. 

Usgge: 

1 • 11 converting'' strings 

"de 1 · s t r i ng { bitJ (*) 
char ' 

f*, (*) if parameter of procedure 
or (N) if user's own variable */ 

(bit' 
virtual_string .Jl ). (*), 

char) 
I* DQ1 a parameter */ 

(i,j) fixed bin(17); 



,. 
~' 
t 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.10.03 PAGE 2 

To make virtual_string into the equivalent of string: 

. {bsl 
.call cv_string$ cs{ (string, virtual_string); 

To mak~ virtual_string begin with the 1-th bit/character 
of stnng: 

call cv_string${bs). (string, virtual_string, i); 
. cs I 

To make virtual_string contain l bits/characters beginning with 
the 1-th bit/character: . 

call cv_string$fbs) (string, virtual_string, i, j); 
csJ 

In the last two descriptions of usage, the value of i 
should be 1 to get the first bit/character of string into 
virtual_.str. ing; in. case it is not obvious,. the last description 
corresponds closely to the operation of the substr function 
and is also roughly equivalent to a dynamic occurence 
of 

del virtual_string (bit ( (j) defined string position (i); 
· tcha~ 

in PL/I (C28~6571-4, pp 56-58), but note that in the PL/1 
definition.!. would have to be a decimal integ~r constant. 
In the cases above a call to cv_string is equ1valent to 
a ca 11 to cv_string$cs. . 

2. Changing pointer to virtual string. 

del stringp ptr; I* other declarations as before *I 

call cv_string$(bP( (stringp, virtual_str,ing, i, j); 
·\cp f 

This call is similar to the 4-argument call listed under 
(1) above, except that the first argument is a pointer 
directly to the data of a string, instead of a string 
variable (with its attendant specifier), and the first 
bit/character is assumed to be in the first bit/character 
position of the word pointed to by strin~p •. (Note numbering. 
of bits is 1-36 in a word, not 0-35; sim1larly characters 
are numbered 1-4, not 0-3.) 



MUL TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.10.03 PAGE 3 

3. Extracting pointer information from string. 

ca 11 cv_st ring${::} (string, strlngp, !; j) 

For these calls, strinl is, as before, an arbitrary bit 
or character string, e ther varying or non-varying~ and 
.may be a parameter of the procedure or an arbitrary string 
variable. The arguments stringp, l, and l are all output 
arguments and must be supplied. 

Upon return, string¥ points to the first word containing 
any of the data, 1 s the offset in bits or characters 
of the first relevant bit/character in the word pointed 
to by strinqp (the range is 0-35 for bit strings 0-3 
for cha.racters), (the range is different from {15 and 
(2) due to·considerations of accessing efficiency, and 
for hi stor ica 1 reasons dea 1 ing with the numeration of · 
elements of a string), and l Is the nunt>er of bits/characters 
in string. 

4. Get virtual string from poin~r to ACC-type character
string •. 

del accptr ptr; I* points to first word of 
ACC-string *I 

call cv_string$accp(accptr, virtual_string); 

(An ACC-type string is a ~tring of characters whose first 
9 bits (1st character) are interpreted as the count of 
the succeeding characters~) 

Upon return virtual_string represents the data pointed 
to by accpt r. 

Implementati~n 

The segment is coded in EPLBSA. 

On entry various switches are set: the size in bits of 
the basic element (1 for $bs, !QQ, !Qo, 9 for $cv .string, 
1£1, 1&.2, ~, and Jaccp) and whether the result Ts a 
pointer <Sbx, Sex,) or a new specifier (all others). 

Where the input argument. is a· string, the specifier is . 
examined to check for legality, and the various indirections 
performed to get the real address of the data, as well 
as the bit offset and (current) length. 



_r:· 

MULTICS SYSTEM•PROGRAMMERS' ~NUAL SECTION BY. 10.03 .. PAGE 4 

At this point. if pointer information is to be returned. 
the program renorma 1 izes the length and offset information 
to the appropriate element size. returns the poi.nter. 
offset and length vari,ab les. and returns to its caller. 

If only two arguments were passed to the $cv_strin~. $cs 
or Sbs entries. control passes to the cleanup port1on 
of the program. which .computes the bit offset and data 
pointervalues •. adds the ID bits. stores away the revised 
dope and the new da.ta pointer. and returns. (Note again · 
that no data movement has taken place. and that virtual_string 
~'points to" the same data as the original input string 
or pointer [or to a sub_string of it]). . · 

If four arguments were passed to the three entries named 
above or if control comes in at the 1£.2 or 1!2,Q. entries. 
the value of l cmd the original length of the input string 
is used as the basis for further calculation (if the input 
was a pointer. a value of 36 x 2**18 bits is assumed for 
the original length of the string - the longest non-overlapping 
bit string containable in one segment). 

If l is negative or zero. further computation ceases and 
a zero-length string results. 

Next the value of 1 is picked up and tests are performed 
for cases of the requested string overlapping the bounds 
of the input stringJ in no case will the returned virtual 
string overlap the bounds of the original input string 
{see examples in Fig. 1). 

I 

i :.i 
I 
I 
I 

j ' 

~original string 

.._returned virtual string 

I ._original string 

._returned virtual string 



' ' 

.MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BY .10.03- PAGE 5 

or 

. r-- -. I . I 
I . 

k:::::::=:===l- - - --=·' 
~ . j 

I I 

...original string 

...-returned virtual string 

-- - - -, . 
: .... original string 
~-

1 . J 

F-igure 1 

.._returned vi rtua 1 string· 
(zero length) . 

Finally, control passes to the cleanup section for return 
of the specifier for whatever residual virtual string 
remains, and c?ntrol returns to the caller. 

For the$gcce entry,.the first 9 bits of the word pointed 
to in the_first argument are picked up, thevalue·is 
multiplied by 9 (the number of bits per character) and 
control pa~ses_ immedfately to the cleanup code. 

Notes 

Except for theSpcce entry, the. data words of the input 
string or pointer are never ex~mined. 

No checks are made as to whettler the effective string · 
would wrap-around the end of a segment (i.e., whether· 
the word-offsets 777777{8) and 0 are contiguous in.the 
resultant virtual string). · 

Likewise, no check is made of the lega 1 ity of ·the first 
character of the ACG-string, since the maximum length 
that would result is a 511-character string~ 



MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BY.10.03 PAGE 6 

Error Checking 

The table below lists error conditions which may occur: 

1. invalid code in specifier of first argument. 

2. Scs, Sex only: number of bits in first argument not 
evenly divisible by 9, or bit-offset not divisible 
by 9. 

When an error in the arguments is encountered a zero-op-code 
is executed; the address field contains the given error 
code, which shows up in the EA word of the SCU data for 
the resultant fault. 

Warning 

Certain rules should be followed to avoid erroneous, if 
not fatal, mis-use of cv_string. 

For instance, a varyin~ string can be passed in a calling 
sequence as a non-vary1ng one, by calling cv_strin;1, after, 
and only after, the last assi.~nment statement deal1ng 
with that string between the 1 definition•• and the use 
of virtual_string in a call, it will most likely point 
to trash as its data, since varying strings keep the data 
in a free-storage area, and a new assignment changes the 
location of the physical allocation of the string. 

In a similar vein, if a procedure wishes to return a virtual 
string (passed by a parameter) to its caller, care must 
be taken that the virtual string does not point to data 
that wi 11 be part of an inactive block when control returns, 
that is, the data must not be part of an automatic variable 
in the called procedure's stack frame. (This is equivalent 
to saving a pointer to an automatic variable in a descendent 
block) (Note that a string literal may be the subject 
of a cv_string: its lifetime is effectively "eternal'', 
since it is in the text segment; i.e., it should remain 
active throughout the subsequent life of the process). 
Likewise, for the entries to cv_string where the first 
argument is a string, it should be a real variable, and 
not an expression (e.g., the concatenation of two variables), 
since EPL is likely to re-use the temporary string created 
to hold the resultant string with deleterious results 
as mentioned for varying strings. 



MULTICS. SYSTEM-PROGRAMMERS' MANUAL SECTION BY.10,.03 PAGE 7 

When a vi rtua 1 string is the object of an assignment st,atement 
(i.e., on the 11 left-hand side" of the 1' ...... sign), no information 
remains as to whether the data was or was not originally 
part of a varying string; thus the PL/ I rules f_or ass i;Jnment 
to a non-varyingstring apply. with padding or truricat1on • 
as appropriate. · 

Examples 

The following program is an example of some uses of cv_string 
for scanning a line of the form 

. arg1 arg2 arg3 ••• ar.gn 

After an initialization call to 11 prime11 the procedure, calls 
to the main entry-point extract arguments (for simplicity · 
in the example, only 1 space is allowed between arguments, 
and none at the. beg inning) •. · · · · ., 

When the end of the line is reached, a zero length string 
is retl,l rned. 

scan_l ine$prime: proc( 1 ine); 

de 1 1 ine char(*), 

(scanp ptr, 

.. I* initialization 
entry *I 

I* may be varying *I 

(si. sl. so) fixed bin(17)) int static; 
I* save values */ 

call cv_string$cx(line, scanp. so, sl}; 

si=O; 

·.return: 

fetch_arg: entry(arg); I* return virtual
string represent:ing 
atomic argument *I 

del arg char(*); I* a virtual strin~ 
will be returned *I 

de 1 1 tx based ( scanp)" . 
2 ch (0:1023)'char(1). 

do i == s i to (s 1-1) whi 1e (scanp-> tx. ch (i+SO) 
end; 

call cv string$cp(scanp. arg. si+s0+1, i-si); 
si=i + T; · 

end scan_l ine$prime; 

""' ·II =. n) i 

·: .... ·'·' 
.·! ; 

·., 

. ·. ~ 

·.• J_., 

•· -.~ 



MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BY.1D.03 PAGE 8 

The following program purports to call scan_line correctly: 

test_scan: proc; 

del val char(*); 

ca 11 scan_l i ne$pr ime ("a be def gh ij k lmno" ) ; 

get_va 1: ca 11 scan_l ine$fetch_arg (va 1); 

if length (va 1) -= 0; 

then do; 

end test_scan; 

call write_out$nl ("val ==''' 11\talll" '.", 0); 

go to get_va 1; 

end; 

call write_out$nl("A11 done••, O); 

Note the following features: 

1 • The declaration used to access the characters is a 
2 1evel structure, since EPL will not directly pack 
single-level arrays of strings. The array information 
is placed with the character string, however, on the 
expectation of.such a millenium. 

2. The array bounds are set starting at 0 to remove the 
need for 6 instructions of testin9 code per reference 
to the array, having to do with v1rtual origins, with the 
resultant need to add 1 in the call to cv_string$cp. 
(The 6 instructions could be replaced by 1 instruction 
placed a little more strategically, but that is a 
different matter.) 

3. The built-in length function may be used to examine the 
returned virtual string; this is preferable to 

if va 1 = •• 11 

since the latter results in an external call to 
accomplish the comparison (the compiler does not know 
at compile-time how long the string will be; it does 
know, however, how to compile code to find out what the 
length is, if the program wishes that information). 



,. 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION CY.10.G3 PAGE G 

4. The string may be used in any legal PL/J cxpress:t(_-::ons 
in a normal way; note again, however, that the 
concatenation shown wi 11 result in creation of two 
temporary varying strings. 

ltJhere calls are made to modules which require n•)n-varying 
strings as arguments (such as to the basic fi lc system), 
the following coding sequences maybe used if one has on 
hand only varying strings: 

del (v1, v2 •.• ) char(N) varying; 

del (x1, x2 ••• ) char(*); 

call cv_str:tng(v1, x1); 

. . . 
ca 11 cv_s t ring (Y.D. .. 2ffi); 

f-:'• N is genera 11 y numcr ic. 
c.q.,-S11 -:'•/ 

j;'• not vary i nq -:':I 

call hcs_~fgxxby (x1JI x2 ••• ); 

~vhi le less esthetic; the following also works: 

del (v1, v2, ••• )char(N)var; 

del cv string ext entry 
returns (char(*)); 

/-:'• as before ..,., I 

call hcs_~fgxxby(cv_string (v1 )., cv_stt~:tng(v2 )., •.. ); 

Further usages, 9rotesque or otherwise., arc 110 tc) the 
fertile imaginat1on of the user; perusal of code successfully 
using cv_string is highly recommended. 




