
MUL TICS ·- ~· S TD~- PRC-r>.AMf'·1ERS' rv1ANUAL SECTION BY.~5.02 PAG~ 1

Published: 05/03/67

Identification

Time Conversion
.calendar output 1 calendar_input
L. B. Ratcliff

Purpose

The calendar output procedure performs the basic computations
required to convert internal calendar clock time to more
conventional external forms involving year~ month, day~
etc. calendar input computes an internal calendar clock
time when given a time in parameter form, i.e., year,
month 1 day 1 etc.

This procedure is based on conventions and techniques
discussed in section 80.10.02.

Discussion

The internal form of a clock time is a signed 71-bit
integer. This time is in microseconds relative to 0000
hours GMT 1 January 1, 1901. The equivalent external
form consists of the components:

year (AD)
month
day of month
hour
minutes
seconds
microseconds
time zone
day of I:Jeek

integer
integer
integE~r
integer
integer
integer
integer
char. string
integer

from 0001 to 9999
1 to 12
1 to 31
0 to 23
0 to 59
0 to 59
0 to 999999
3 characters
1 to 7 (1 = Sunday)

Output conversion (calendar_output) produces all these
components; input conversion (calendar input) reauires
allbutdayofweek. ·- '

While the calendar procedures perform the basic time conversion
and are available to any user~ with their lengthy argument
lists they will not be called directly by most users.
The procedures get_calendar and put __ calendar are provided
to call calendar_output or calendar_input and format the

,...

MULTICS SYSTEM-PROGRAMfv1ERS' MANUAL SECTION BY.15.02 PAGE 2

time. (See Section-BY.15.03.) It is anticipated that
other special formats, in addition to those provided by
get_calendar and put_calendar, will b~ provided by procedures
which call calendar_output, calendar_1nput, get_calendar
and put_calendar. ·

Implementation of calendar_output and time_conversion_table
is planned for Phase II. Implementation of calendar_input
and time_zone_table is planned for Phase IV.

Time Conversion Table

Time conversion table is an external data base which is
aware only of Eastern Standard Time (EST) and Eastern
Daylight Time (EDT). This data base is subject to modification
by the user who lrJishes to know or specify times in other
zones. The primary function of time conversion table
is to accomodate time changes within_-a specific-time zone.
Each entry in the standard table specifies a time at which
EST or fDT becomes effective. Each table entry contains
three items; the initial version contains the following
entries:

time (i) constant(i) string{i)

30 Apr 1967 0600 -5 hours EST
29 Oct 1967 0600 -4 hours EDT
29 Apr 1968 0600 -5 hours EST
28 Oct 1968 0600 -4 hours EDT

2 Jan 10000 0000 -5 hours EST

The time and constant entries are values in microseconds.
Note that thetl"me(i) are the times at "''hich time changes
take place and are in order with earlier times first.
The last entry must contain a time· greater than or equal
to 2 Jan 10000 0000 to indicate the end of the table.

For output conversion, the items time(i) determine the
range in which the specified time occurs. The corresponding
constant(i) expresses the difference between GMT and time
in the zone identified by string(i). If the specified
time is between time(k-1) and time(k), the corresponding
conversion values are constant(k) and string(k). For
input conversion, the specified time zone is compared
to the items string(i) to determine a corresponding constant(i)
required to compute an internal item (GMT). A detailed
discussion of the time conversion table appea~~ in Section
BD.10.02.

MULTICS SYSTH'l-PROGRAMt11ERS' ~1ANUAL SECTION BY.15.02 PAGE 3

Time Zone Table

If the specified time zone is not found in time_conversion_table
durina input conversion, an auxiliary table, time_zone_table,
is se~rched. Each entry in time_zone_table consists of

.two items- constant and string. The constant(i) are
values expressing the time difference in hours between
GMT and the zones indicated by th~ string(i). Standard
entries are:

constant(i)

-5
-4
-6
-5

0
-8
-7
-7
-6

0

string (i)

EST
EDT
CST
COT
GMT
PST
PDT
~~ST
MDT
<SP> <SP> <SP>

The ordering is from most likely to least likely. Each
user may replace this table with his own version if he
wishes to input time in zones other than his own which
do not appear in the standard time zone table. The last
entry must contain the string <SP>-<SP>-<SP>. The
time_zone_table must not contain more than 50 entries.

Usage: calendar

To obtain the external components of an internal clock time:

call calendar_output (clock,year,rnonth,day,hour,min,
sec,musec,zone,weekday);

To convert external components into an internal clock time:

call calenda~_input (clock,year,month,day,hour,min,
sec,musec,zone); ·

Arguments are declared as follows:

del clock fixed bin (71), zone char (3),
(year,month,day,hour,min 1 sec,weekday) fixed
bin (17), musec fixed bin (35);

t~UL TICS 5"STEf"1- PROGRAHMERS' MANUAL SECTION BY.15.02 PAGE 4

Implementation

The calendar procedures are aware of the Gregorian calendar
system only. Users who are interested in ancient systems,
reform calendars, or other concurrent calendars will require
~more sophisticated procedure whose first function will
be to determine the required calendar system and then
to call the appropriate computational procedure, such
as calendar_output. One rather arbitrary check is made
by calendar_output to ascertain that the computed Gregorian
year is in the range 1 through 9999. If the year is outside
that range then an error condition is signalled. Beyond
that, the calling procedure may establish the time at
which the Gregorian calendar is effective. (Pope Gregory's
calendar was not universally accepted in 1582. It was
first used by England in 1752, by several other countries
in 1900, and yet others well into the 20th century.)

The fol.lovJing discussions describe the implementations
of calendar_output and calendar_input. Expressions involve
the PL/I generic function ~oq (a, b) to express a(modulo b)
and the notation [x] to indicate the integral part of x.

A. calendar_output

Clock time is a 71-bit integer. Its value is in microseconds
relative to 0000 January 1, 1901 GMT. The return values
and clock time are declared as follows:

del (year,month,day,hour,min,sec,weekday)
fixed bin (17), musec fixed bin (35),
zone char (3), clock fixed bin (71);

The retu1~n values are determined by the following steps:

Using clock and tim~ conversion table
in the specified tin~ zone. Th~ valu~
compared with the entries time(i). If
first entry which exceeds s;.l_oc!'S_ then

local_time = clock+constant(k)
zone = string(k)

compute time
of clock is
tirne(k)is the

MULTICS SYSTEfvi-PROGRM~f'-1ERS' t;iA~JUAL SECTION BY.15.02 PAr-E 5

2. Separate local_time into an integral number of days
(ndays) and fractional part of a day (rday),

ndays = [local_time/8.64e10]

rday = mod (local_time, 8.64e10)

3, Using rday (the number of microseconds since 0000 of
the day) compute .b_our, min, ~~ and musec.

4. Compute number of days (dlll) relative to Monday,
January 1,1 (Gregorian calendar system).

dlll = ndays + 693960

where 693960 is the number of days from January 1,1 to
January 1, 1901. If dlll is negative or exceeds
3652058 (Dec. 31,9999) then seterr (BY.11 .01) is
called to record the error and condition (calendar output
err) is signalled, - -

5. Determine weekday. Sunday = 1, Monday = 2, etc,

6.

weekday= mod (dlll+1,7)+1

Compute the year and day of the year, If the date is
betvJeen January 1, 1901 and February 28,2100 inclusive,
a part of the ensuing computation can be bypassed,
Thus if 0 ~ ndays ~ 72742 by pretending every year is
a leap year (that is, adjusting ndays to the value,
fake, that it would have if every year were a leap
year), the actual year and day_of_year can be found.
Noting that there are 1461 days in four years (including
one leap year), 3 days must be added to ndays for
every full 4-year period in ndays, and 1 day must be
added for each additional 365-day yea.r, vvith an
adjustment (subtracting one day) if the actual day
is Decembe~ 31 of a leap year,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.15.02 PAGE 6

7.

fake= ndays + 3[ndays/1461]
+ [mod(ndays~1461)/365]
- [mod(ndays~1461)/1460]

year = [fake/366] + 1901
day_of_year = mod (fake~366)
Go to step 8.

Additional calendar adjustments are required to
compute the year if it is outside the range checked
in step 6. Aaain pretending every year is leap year~
and noting that 400 years of Gregorian Time contain
146097 days and that 100 year periods ending in a
centesimal year not divisible by trOO contain 36524 days~
the proper adjustments can be made. Observe that in a
400 year period (e.g. 1601 through 2000) 303 years
contain 365 days and that in a 100 year period described
above there are only 24 leap years. Thus it is
necessary to add 303 days for each 400 year period~
76 days for each additional 100 years, 3 days for
each additional 4 year period, and 1 day for each
additional year with an adjustment for the last
day of a. 400 year or 4 year period. The values
x, y and z are computed first to simplify the
computation.

fake

year

x mod (dlll~ 146097)

y = mod (x, 36524)

z = mod (y, 1461)

= dlll + 303 [dlll/146097]
+ 76[x/36524] + 3[y/1461]
+ [z/365] - [x/146096] - [z/1460]

= [fak~/366] +

day_of_year == mod (fake, 366-)

SECTION BY.15.02 P.L\GF 7

B. Using day of year (which is the number of days .f2.?.:...St
January 1-of--the year), compute IT].2.n_th and d?.Y· First~
set j = 1 if year is a leap year. Set j = 0 if year
is not a leap year. Now, by giving every month 31
days~ month and day can be obtained. Calculate,

b =day of year- 59 -i - - ~

to determine whether or not month falls beyond February.
If b is positive make the adjustment·

day_of_year = day_of_year + 3 - j + 2[b/153] +
[mod (b , 1 5 3) I 6 1]

This adds 3-j days for February, 7 days for each full
5-month period beyond February and 1 day for each
full 2-month period beyond the last full 5-month
period~ taking advantage of the pattern of numbers
of.days in the months: 31,28/29,

In any case

31,30,31,30,31,
31,30,31,30,31.

month + [day_of_year/31]

day = ·+mod (day __ of_year,31)

Return.

calendar inout - '

All components have been specified except, possibly,
time zone. First, a composite 71-bit representation
of the time, T, is created. The following input
arguments are used:

y V20.1' - 1
m month
d -- da_y_
j 1 if year is a leap yeat·, 0 if not.

-

. (. .,.

I\1ULTICS SYSTEf'-1-PROGRA.MHERS' MANUAL SEC T·I ON BY. 15.02 PAGE 8

The number of days (ndm) in the m-1 full months is
the value of the mth element of the array (0,31,59,
90,120,151,181,212,243,273,304,334), plus j when
!11)2. Then the total number of days is:

ndays = 365y + [y/4] - [~/100] + [y/400]
+ ndm + (d-1)- 693960

where 693960 is the number of days from Jan. 1,1
to Jan. 1, 190 1 .

T = (((nday s~',2Lf.:- hour) ~·,so+!Il in);',60+ g£)i•1 o6mu sec

The final step from the composite time, T to an internal
time (GMT) involves subtraction of the constant for the
specified time zone from T. HO\JIJever, the follol.rJing problems
must be taken into account. ·

1. The caller may implicitly specify the time zone in
his time conversion table (which contains information
to handle time chang-es I!'Jithin only one zone) by using
<SP> <SP:> <SP> as the input character string for zone.
If the table contains only one entry, there are no
complications. However, for multiple-entry tables,
the internal clock time is determined bv usinq the

' -constant

K =max (constant(i))

for a 11 i .

Each entry of time conversion_table is checked until

T < t i me (i) + K

then the corresponding constant(i) is subtracted from
T to obtain the internal clock time. The value. of K
is assumed to be the constant corresponding to a
daylight time entry. Its use here establishes the
convention that standard time stays in effect until
daylight time becomes meaningful. Note that in this
case 0130 April 30, 1967 is accepted as standard time
and identical to 1230 April 30, 1967 which is
interpreted as daylight time, as is 0130 October 29,
1967.

fv1UL TICS SYSTEtv\-PROGRAV!f-.. IERS" f'-'\Ai~UAL SECTION BY.15.02 PAGE 9

2. The caller may explicitly specify the time zone which
is in his time_conversion_table. Here, let

3.

N =min (constant(i))

for all i. The table is searched until

T < time(i) + constant(i)

If constant(i) = N then the internal clock time is
T- constant(i). Hovvever, if constant(i) ·} f'-1 and
time zone is not string(i) the search is continued.
This allows standard time to be accepted any time
since the next entry in a properly constructed time_
conversion table is a "standard time11 entry and
contains c3nstant(i) = N. (Note that if T is a time
in ,_!uly, 1967 and ;;~one= EST then T < time(2) +
constant(2), constant(2) # N, and zone# string(2).
However, T <time(3) + constant(3) and constant(3) =
N.) If time zone is string(i), one additional test
is required based on the assumption the current
entry indicates a transition from daylight time to
standard time. The time is specified to be daylight
time. It is meaningful except during the first hour
of this intet~val. If

time(i-1)ST-constant(i-1)<t!me(i-1)~constant(i)-constant(i-1)

an error is signaled since the explicit time does
not e)dst. Also, if the (j-1)th entry does 1-lot
exist an error is signaled; the initial entry
should be for standard time.

The caller mav exolicitly specifv a time zone which
is in time zo~e t~ble. No error' rests ar~ made;
T- consta~t(i)-is the internal clock time.

The four errors in calendar inpL1t are handled b;t calling
seterr (BY .11.01) to record-the error, then signa'll ing
calendar _input __ err. The et~rors and thei ,~ codes are:

...
fv1LJLTICS SYSTEr'i··PROGRAr·1~1ERS" fi1f.'H!UAL SECTION BY.15.02 PAGE 10

c i 001

ci 002

ci_003

ci 004

The explicit time given does not exist.

Time_conversion_table is improperly constructed.

Specified time is beyond the range of time
conversion_table.

Error in time zone table. Maximum number of entries
allo~:ved is so-:- The last entry must contain the
stri.ng <SP> <SP> <SP>.

