
't;:.O •.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

List Structure Manipulator (LSM)
Edwin W. Mey~r~ Jr.

Purposg

SECT! ON BY. 22.01 PAGE 1

Published: 07 /00/69

The list structure manipulator is a utility package that
enables a procedure to easily and efficiently create~
reference, and manipulate a data segment containing LSM
standard list structure whose nodes consist of list, hash
list, ascii~ bit, and binary data types.

Overview

All list structure operations are performed within a working
segment in the process directory. · Jn order to read or
alter a list structure segment, a procedure first issues
a call to 11 pul1 11 into the working segment the structure
hanging off the root node of the LSM-type segment. The
address of the root node of this new structure is returned
to the caller. Similarly~ iri order to \llrrite a permanent
LSM segment, a procedure issues a call to 11 push 11 the l:tst
structure hanging off a specified node into the specified
segment and s·et the root node~

The 1i s ts of a LS M segment can be moved into the working
segment without overwriting 1 ists previously brought in.
In this manner two or more LSM segments can be coalesced.
On the other hand~ the action of.writing a list into a
permanent LSM segment destroys all data previously in
the segment and sets the root cell of that segment to
point to the !nserted list.

Each procedure that uses the list structure manipulator
can create its own working segment. Thus there is no
danger of unrelated procedures performina conflicting
operations on the ~arne working segment .. ~ -

LSM Data Typ~s

There are six data item types d~fined in version 1 of
the list structure manipulator. (See Fig. 1) These are:

MULTI CS SYSTEM- PROGRAMMERS ' MANUAL SECTION BY. 22.01 PAGC 2

1 •. indirect - interna1 to LSM. Invisible to user.

2. fixed array - an array of fixed ~inary numbers
of precision 35. The limiting case of 1 array
element is used to represent a single number.
The maximum· number of array elements a 1 loca tab 1 e
is currently 4094. ·

3. bit ~ ... trin~ - !he larg~st aJ locatable string is
4094"36 b1ts 1n lengtn. ·

4. character string - Multics stand~rd ascii code.
The largest a 11 ocatab le string i !; 4094 ~~
characters in length.

5. node list - an array of node addresses. The
~aximum number of node elements allocatable is
currently 4094. · ·

s. hash list -consists of a node array of bucket
lists. Each bucket is a forward threaded set
of 3~e1ement node array buckets. Node 0 points
to the next bucket. Node 1 points to a reference
character string data. type and node 2 is a
related node.

Data i terns are allocated in contiguou!:; blocks of storagf:
within a segment. The first word for·a1l data item types
is a specifier; the actual data follows in succeeding
words.

A specifier word has the following format:

bits 0-5 "type11

bits 6-17 11 a11o11

bits 18-35 ncurl"

type code -determines data item type

allocated block length -contains the
number of words. in this block (including
specifier)

current data length - in units rel~vant
to data type

A node address is a single word item with the following format:

bits 0-17 - =0 - reserved for process-independent
segment index

bits 18-35 offset address w:t thin the LSM segment

0 is defined as the null address.

!'

MULTICS SYSTEM-PROGRiAMMERS' ML\N.UAL SECTION BY. 22. 01 P.l4GE 3

LSM Data Segment For'mt

The first three word·; of an LSM data segment arc reserved
as follows (see also Fig. 3):

word 0

word 1

word 2

words 3 to
f4K-1

11 ve rs :~on" ·

=1 - version number of the LSM which created
the scament . ~

11 free11

offset address of the first worq of the free
block. (The free block :i.s a cont·:i.g!Jous block
of words lying between the allocated part cf
the data segment and its upper bound.) Its
initial value is 3.

11 root"

contains a node address pointir:tg to the root
node of the 1 ist structure

Th~s section is divided into two parts: t:he
a11ocated portion and the free block. !n5,t5.a11y
the free block totally occup~es this section,
but as new dqta blocks are created, the
necessary number of words are snipped off the
low address end of the free block and allocated
to the data blocks.

LS M Procedure Ca 11 s

ca 11 1sm1 ~in it (pr);
de 1 pr pt r;

If a null pointer is suppliec!,, 1sm1~1n:i.t finds or makes.
an empty working l~m segment in the process directory
and returns :its base pointer :i.n 'pr'. Jf 'pr' is not
nu11., lsm1~in:i.t assumes it to be a base po~nter to a
working segment to be truncated and re-initializcd.

MULTICS SYSTEM-PROGRAMMERS' IV1ANUAL SECTION BY.22.n1 PAGE 4

c:a11 lsm1gfree (pr);

The segment pointed to by 'pr' :is truncated to zero and
added to the free working segment list for later re-use.
This ca 11 shou 1 d be made whenE~ver an 1 sm \.'llork i ng segment
is about to·be abanjoned in order to prevent the buildup
of many blocks of garba~e in secondary storage. A null
pointer is returned in pr'.

call 1sm1ggc (pr, count, active_node);
del count fixed bin (17),
active...:.,node fixed b.i.n (34);

If more than 'count' - 3 words have been allocated to
data items in the working segment (base pointer 'pr'),
then it wi-11 be garbage-collected. This is done by
transferring a11 of the list structure inferior to
'active_node# to a new working segment. Only items
traceable from 'active_node' get transferred. The base
pointer to the new segment is returned in 'pr' and the
node equivalent to 'active_node' in the new segment is
returned.

ca11 1sm1~pull (pr; dir_path, entry, root_node);
de 1 di r .. .: . .Path char(~·~),

entry char('"),
root_node fixed bin (34);

A copy of th~ list structure contained in 'dir oath' >'entry'
is moved into the working segment, and the address of the
root_node of the working copy of the moved lists is
returned in 'root_node. ' If there is any error such that
the list structure can not be pulled in, 'root_node" is
returned ·as -1 • ·

can 1sm1gpush (pr, dir_path, entry, root_node);

A copy of the list structure lnferiQr to 'root_node" in
the working segment is "pushed" into the segment
'dir path"'>'entry' and its. root node cell is set to paint
to the homolog.of 'root_node Any previous contents·of
the seqment are. overwritten. If the· list structure can
not be-ITlQved for any reason, 'root_node' is returned as
-1 • The ori gina 1 1i s t s t r~Jcture inferior to 'root_node ...
is destroyed~

i

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.22.01 PAGE 5

ca11 1sm1Sget..,;.blk (pr, node, type, curl, bpr);

del node fixed bin (34), /'>':address to data item~~;
type fixed bin (17),/*data type*/
curl fixed bin (17),/')'•current iength*/
bpr ptr; /'l':pointer to start of data.,"/

The data block at address 'node' in the working
segm~nt (base pointer is 'pr') i~ investigc;ted
and 1ts 'type,'.'curl,' and 'bpr to the f1rst
word of the data are returned. If 'node' is not
~alid, 'type' is returned as o.

call 1sm1~make_blk (pr, node, type, curl, bpr);

A new data block is created in the working segment
of type 'type,' current length 'cur1 1 ' and the
minimum allocated length sufficient to encompass
the current length. The node address of the created
data block is returned in 'node' and a pointer to
the first word of the data area is retwrned in 'bpr.,
If a new block can not be created, 'node' is returned
as -1.

ca11 1sm1Shash (pr, node, op_code, keyp, key1, s_node, r_node);

del op_code fixed bin(17), f·l'roperation and key type code*/
keyp ptr-, /~':pointer. to base of key character string~'•/
key1 fixed bin(17), /*character length of key*/
s_node fixed bin(34), /i•node of key string supplied or

returned ·
r_node fixed bin(34), /*related node associated with
· key string - supplied or returned*/ .

This call check$ the hash list at 'node' in the working
segment for the·~xistence of the key character string
defined by 'keyp' and 'key1' or 's node' (depending on
'op_code') and adds, deletes, reads, or writes the
key-string and its related node.

M1JLTICS SYSTEM-PROGRAMMERS, ~NUAL SECTION BY.22.01 PAGE 6

op_code c~perqt ion

key defined by: if key found if key not found
keyp., key1 s_node

0 4 reads into ... r node" -1 =
's node' - I and ... -node' r_

1 5 same as above adds key to
1:t st - returns
's node' and -'r_ node' = 0

2 6 writes 'r node' ,adds key to
into related list - writes
node cell - ... r_ node' -
returns 's_ node' returns 's -node'

3 7 deletes key and returns
related node 'r node' = -1 -from hash list

,.._

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .22.01 ?AGE 7

indirect

fixed
array

bit or
character
string

node
array

hash
list

21 I n+J_
fix· a

~pecifier

..... J ix 1

·fix n

Fxl I :!-specifier. .
~~~ ~J x ~ 3 - b1t str1ng r _ ~ -·~~ ·. X = 4 - char string 

I 

j.-:;1,._-=--+-~~ 4--s pee~ f i er 
=0 if no inferior list 

node of next 
~----------~~ bucket or 0 

node of key 
string 

,__ _____ ~related node 

Figure 1. LSM Data Types 

next bucket 
string_node 
related_node 



MCLT!CS SYSTEM-PROGRAMMERS~ MANUAL SECTION BY.22.01 PAGE 8 

0 
1 
2 
3 

i 

64K 

0 5 6 .17 18 =:r c= ' ::r . ""r-Jf\ ...____if. ---'-
"ty'pe11 "allo'' r1 11 

data allocated current 
type 1ength·of of data 

data block block 

0 . 1'1 \~ '35 

SPEC! FI ER 

length 
within 

~~ -·~. -.. """:1{:~-·_.o;;..· _..f_· ---""'r'~f N'JD E ADDRESS C ~ L L 

reserved offlt of beqinning 
for· of data block with 
segment respect to start of 
index segment 

Figure 2. Specifier and Node Address Formats 

1· ~version number of creator LSM (=1) 
t----------t~index to first word of free block (init3) 
~----------~~node address of root of list structure 

allocated block containing data items 

free block 

Figure 3. LSM Data Segment Structure 

'· -


