
'j

'

r

TOt
FROMt
SUBJz
DATEz

MSPM Distribution
Charles Garman
BY .3.01
06/23/67

The attached MSPM section describes a simple scheme to
accomplish character string 1/0 for segments; it was originally
a part of the edit command but has been re-worked and
documented separately on the basis of general utility.

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.3.01 PAGE 1

Published: 06/23/67

I dent if i cation

Character String I/O for Segments
read_cs, wr i te_cs
Charles Garman

Pyrpose

Read cs and write cs provide a set of calls which allow
simplified movement of PL/I character strings to and from
segments, using based character strings to access successive
lines of the segments.

: Both routines are 11 single-level"'t that is, they can be
used only for reading from (writ ng into) one segment
at a time (but each is independent of the other)J multiple-level
reading or writing by one routine, while equally simple,
requires a different calling sequence, and is beyond the
scope of this document.

Usage and ImPlementation

In order to simplify the calling sequences of the basic
11 transmission•• references., the procedures keep certain
variables in PL/I 11 internal static11 storage a

1)

2)

3)

a pointer to a region from (to) ~ich the characters are
moved,
the number of the last (terminal) character to be read
from (written into) the region, and
the number of the current character., that is, of the last
character involved in a transmission call.

Entries are provided to initialize any or all of these
variables in either procedure., and to obtain their current
values.

Since these procedures are used by the edit command., the
variables are grown (with the current implementation of
EPL internal static storage) in the segment edit_stat_
(through the use of the options clause in the procedyhe
statement)., but this should not hinder the usage of t e
procedures in other contexts.

To initialize for reading (writing).,

del ch_ptr ptr,
(n_chars, cur_char_no) fixed bin(17) 1

r

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BY .3.01 PAGE 2

c.alJread_csJ~setup (ch_ptr, n_chars, cur_char_no)J
'j_wri te_cs

Ch_ptr is a pointer to a region of storage from (into)
' whlch re.ad_cs (write_cs) is to obtain (place) its characters.

On "transmission" calls (see below), characters will be
moved from (into) the region, starting at character
cur_char_no + 1, but never beyond the character n_chars
from the start of the region (the first character of the
region is assumed to be in the first character position
[left-most 9 bits] of the word addressed by ch_ptr).

The region pointed to by ch_ptr may be the base of an
entire segment (e.g., ch_ptr may have been obtained by
a call to the Segment Mana9ement Module [80.3]), or it
may be any smaller piece w1thin a segment (e.g., a portion
of the stack).

In the call to read_cs~setup, n_chars may have been obtained
by a call to get_count~chars (BY.2.07) for the information
stored in the branch for the segment, or it may have been
derived from other data; similarly, in the call to write cs~setup,
if ch_ptr points to the base of the segment, and the maxTmum
length of the segment has been set to 218 words (256 1024~ord
blocks), a maximum value of 1048576 may be used for n_chars.

The calls may be used to prevent initialization of certain
variables by the proper selection of values for the parametersz

parameter: not initialized if value is:

ch_ptr null pointer (88.5.03)

n_chars < 0

cur_char_no < 0

To initialize for reading from (writing into) the beginning
of the region, the value of cur_char_no should be zero.

Once the preliminaries have been attended to, "lines"
may be moved from (into) the region as follows:

del text char(K), I* K is determined by the caller's
procedure. *I

n fixed bin(17),

status_bits bit(4);

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BY.3.01 PAGE 3

callJre~d_cs} (text., n., status_bits);
~r1te_cs

Text is the character string into which read_cs (from
which write_cs) is to move its dataJ n is the number of
characters that were read from the region (the number
of characters to be written); status_bits provides information
to the caller about the success or failure of the intended
transmission. For write_cs., if n is < 0., the length of
text (K) will be used in its stead. The procedures described
~Y.10.02 and BY.10.03 are used., allowing text to be
a varying character string if the user so des1res.

In the normal case., read_cs moves characters from the
region addressed by ch ptr into text., from the current
character to and including the next <NL> character., and
then adjusts its notion of the location of the current
character. Likewise., write_cs appends the contents of
text behind the current character of the region., and adJusts
the value of the current character. <NL> characters will
not be inserted by write_csJ the caller must make hi~
own provisions for them in text.

For exceptional conditions., however, certain alternate
actions occur, and these are reflected in the various
bits returned in status_bits: (the table below summarizes
the text which follows)

Bit Number

1

2

3

4

Meaning if 11 O" b

ca 11 accepted

number of characters
remaining in region
is > 0

Meaning if 11 111 b

call rejected

number of characters
remaining in region
is ~ 0

read csa string to be entire string would
moved fitted into~ not fit in text

write csa value of n
was ~-length of text-

n was > length of
text, only
length(text)
characters were moved

read_cs: <NL> characterNo <NL> character
found within region left in region.

wr i te_cs : always 11 C11 b

MULTICS SYSTEM··PROGRAMMERS' MLXNUAL SECTION BY .3.01 PAGE 4

If the call was rejected, bit 1 is "1"b. For read_cs,
this will occur only if all the characters in the region
had been removed before the call which was rejected.
For write_cs, the desired number of characters from ~t
could not be moved into the region without exceeding the
value of n_chars set in the setup call.

Bit 2 will be set if the number of the current character
equals or exceeds n_chars as defined by a ~setup callJ
it may be set by any call if the transmission involved
the n_chars-th character. (It also occurs concurrently
with the "reject" bit in a call to read_cs.)

The interpretaticm of bit 3 differs s 1 ight ly between read_cs
and write_cs: for reading, since n is a return argument,
it is set if the number of characters which could have
been moved exceeded the length of textJ the characters
which would have been moved will be moved on succeeding
calls until the end of the line is reached. For writing,
it is set if n exceeded the length of te{tJ only length(text)
characters were moved into the region. Note, if n was
<a, this bit will not have been set.)

For read_cs only, bit 4 is normally "O''b, but if a <NL>
character could not be found within the remainder of the
region (from the current character to n_chars), it will
be set to "1"bJ its setting is basically independent of
bit 3, and means only that the last character in the region
(character number n_chars) is not a <NL> character.

To inquire about the current values known to the procedures,

calJrre~d_csll ~fetch (ch_ptr, n_chars, cur_char_no);
'Lwrl te_c~

I* Declarations as for setup entries. */

The fetch entry of each procedure places the current values
of the static variables into the variables passed in the
call: ch_ptr is the pointer last passed in a call to
the setup entry; its value is the null pointer if the
corresponding setup entry has not been called by any procedure
in the process; n_chars, similarly, is the value last
passed in a setup call, or a; and cur_char_no is the number
of the character (withln the region) last referred to
by a 11 transmission" call (as above), or the same as the
previous cur_char_no, or a.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.3.01 PAGE 5

After a call to write_cs~fetch. the value of cur_char_no
may be used as an argument to set_count~chars. BY.2.07.
to save this value in the segment hierarchy for future
reference.

